
CSE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

COURSE MATERIALS

EC 308:EMBEDDED SYSTEMS

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

CSE DEPARTMENT, NCERC PAMPADY Page 2

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Electronics and Communication Engineering

M.Tech in VLSI

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Providing Universal Communicative Electronics Engineers with corporate and social relevance towards

sustainable developments through quality education.

DEPARTMENT MISSION

1) Imparting Quality education by providing excellent teaching, learning environment.

2) Transforming and adopting students in this knowledgeable era, where the electronic gadgets

(things) are getting obsolete in short span.

3) To initiate multi-disciplinary activities to students at earliest and apply in their respective fields

of interest later.

4) Promoting leading edge Research & Development through collaboration with academia &

industry.

PROGRAMME EDUCATIONAL OBJECTIVES

PEOI. To prepare students to excel in postgraduate programmes or to succeed in industry / technical

profession through global, rigorous education and prepare the students to practice and innovate recent

fields in the specified program/ industry environment.

PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering

fundamentals required to solve engineering problems and to have strong practical knowledge required to

design and test the system.

PEO3. To train students with good scientific and engineering breadth so as to comprehend, analyze,

design, and create novel products and solutions for the real life problems.

PEO4. To provide student with an academic environment aware of excellence, effective communication

skills, leadership, multidisciplinary approach, written ethical codes and the life-long learning needed for

a successful professional career.

CSE DEPARTMENT, NCERC PAMPADY Page 3

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

System Software Tools and Efficient Web Design Models with a focus on performance

CSE DEPARTMENT, NCERC PAMPADY Page 4

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES
EC 308

SUBJECT CODE: EC 308

COURSE OUTCOMES

C308.1 Ability to understand basics of embedded system and to design an
embedded system product.

C308.2 Ability to understand the different standards and protocols used for
communication with I/O devices.

C308.3 Ability to distinguish different ways of communication with I/O devices.

C308.4 Ability to understand basic programming concepts of Embedded Systems

C308.5 Ability to understand about inter-process communication.

C308.6 Ability to design real time embedded systems using the concepts of RTOS.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C308.1 3 1

C308.2 2 3 3 2 2 1

C308.3 2 3 3 3 2 3 2 2 1

C308.4 3 3 3 3 1

C308.5 3 2 1

C308.6 3 3 2 1

C303 2 3 3 3 2 3 2 2 2 1

CO’S PSO1 PSO2 PSO3

C308.1

C308.2 3

C308.3 3 3 2

C308.4 3 3 2

C308.5

C308.6

CSE DEPARTMENT, NCERC PAMPADY Page 5

C308 3 3 2

SYLLABUS

CSE DEPARTMENT, NCERC PAMPADY Page 6

CSE DEPARTMENT, NCERC PAMPADY Page 7

CSE DEPARTMENT, NCERC PAMPADY Page 8

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

PAGE NO:

1 Define system and embedded system with
example

CO1 K2 2

2 Discuss briefly challenges in embedded system design

CO1 K3 22

3 Compare RISC & CISC architecture

CO1 K3 14

4 List out classification of embedded system with
example and also define embedded system.

CO1 K3 3

5 Discuss the challenges in embedded system design.

CO1 K2 22

6 Explain various types of embedded system

software

CO1 K2 11

7 Discuss about CPU architecture of ARM processor

CO1 K2 16

8 Explain about embedded processors

CO1 K2 7

9 Explain the different embedded system

development life cycle models

CO1 K2 21

10 Draw the neat diagram of ARM9 architecture and
explain it.

CO1 K2 17

11 Explain the components of embedded system.

CO1 K2 3

CSE DEPARTMENT, NCERC PAMPADY Page 9

MODULE II

1 Write a note about UART CO2 K1 25

2 Draw the diagram of I2C frame format. Explain each

field

CO2 K2 41

3 Explain different data transfer modes used in USB bus

standard

CO2 K2 35

4 Describe the various modes of serial communication CO2 K2 27

5 Draw the HDLC frame and explain it CO2 K2 28

6 Write a short notes on UART & HDLC CO2 K2 28

7 Describe bus arbitration. Explain the bus

arbitration scheme used in CAN bus with example.

CO2 K2 13

8 Discuss about CAN bus and USB bus

CO2 K2 34

9 Explain parallel communication standards ISA &

PCI

CO2 K2 31

10 Briefly describe parallel communication

standards.

CO2 K2 30

11 Discuss about serial bus protocols I2C bus and

CAN bus

CO2 K2 41

MODULE III

1 Draw the hierarchy of memory and explain CO3 K1 50

2 2.Compare static RAM & dynamic RAM

CO3 K3 51

3 Explain about memory system organization CO3 K2 53

4 Explain the concept of interrupt service routine CO3 K3 61

5 Explain any four type I/O types used in embedded

systems

CO3 K2 63

CSE DEPARTMENT, NCERC PAMPADY Page 10

6 Explain the different modes in which a DMA

controller transfers data between

memory and peripherals

CO3 K2 54

7 Describe about interrupt driven input and output.

Point out the different steps for reading port bytes

received from external system.

CO3 K2 55

8 Explain about memory device drivers. CO3 K3 66

9 Summarize memory management device driver

pseudo code with examples

CO3 K2 67

10 Interpret about I/O Devices CO3 K3 68

MODULE IV

1 Explain about various C programming elements CO4 K3 75

2 Discuss about embedded programming in Java

CO4 K2 78

3 Distinguish macros and functions CO4 K2 76

4 Describe about use of pipe and table with a

diagram

CO4 K2

5 Compare C programming and embedded C

programming

CO4 K2 76

6 Discuss about array and multi-dimensional array

with example

CO4 K2 77

7 Discuss the hardware and software components

required for designing an ATM machine

CO4 K3 81

8 Discuss about common software tools used for

testing and debugging during embedded system

development. Explain

CO4 K3 83

9 Explain set top box function and its various CO4 K2 86

CSE DEPARTMENT, NCERC PAMPADY Page 11

implementation on software and hardware

10 Explain mobile phone and its configurations CO4 K2 91

11 Summarize the features of embedded C++.Explain

each one in detail.

CO4 K1 77

12 Describe about debugging and types of software

debugging tools

CO4 K2 92

MODULE V

1 What is inter process communication?

CO5 K3 98

2 .Compare task and thread

CO5 K2 99

3 What do you mean by shared data

CO5 K3 103

4 write a short notes about semaphore

CO5 K3 104

5 What do you mean by mailbox and pipes

CO5 K2 105

6 Explain about interprocess communication

CO5 K3 102

7 Explain about remote procedure calls CO5 K3 116

8

Explain about sockets,pipes and semaphore

CO5 K2 106

9 Explain about mailboxes ,queues and sockets

CO5 K2 111

MODULE VI

1 Explain about RTOS CO6 K3 119

2 Explain services and goals of RTOS

CO6 K2 120

3 What do you mean by process management and

memory management

CO6 K2 129

CSE DEPARTMENT, NCERC PAMPADY Page 12

4

What is soft and hard real time constraints

CO6 K2 107

5 Explain in detail about RTOS ,structurs ,services

and goals

CO6 K3 108

6 Explain in detail about Micro C/OS-II

CO6 K2 135

7 Explain about system level functions and task

service functions

CO6 K2 132

9 Explain about memory allocated functions CO6 K3 133

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 INTERNET OF THINGS 137

.

.

MODULE 1

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :1

EC 308 EMBEDDED SYSTEMS

MODULE 1

Syllabus:

Module 1

• Introduction to Embedded Systems– Components of embedded system hardware–

Software embedded into the system – Embedded Processors - CPU architecture of

ARM processor (ARM9) – CPU Bus Organization and Protocol. Design and

Development life cycle model - Embedded system design process – Challenges in

Embedded system design

Module 2

• Serial Communication Standards and Devices - UART, HDLC, SCI and SPI. Serial Bus

Protocols - I²C Bus, CAN Bus and USB Bus. Parallel communication standards ISA,

PCI and PCI-X Bus.

Module 3

• Memory devices and systems - memory map – DMA - I/O Devices – Interrupts - ISR –

Device drivers for handling ISR – Memory Device Drivers – Device Drivers for on-

board bus.

Module 4

• Programming concepts of Embedded programming – Features of Embedded C++

and Embedded Java (basics only). Software Implementation, Testing, Validation and

debugging, system-on- chip. Design Examples: Mobile phones, ATM machine, Set top

box

Module 5

• Inter Process Communication and Synchronization -Process, tasks and threads –
Shared data– Inter process communication - Signals – Semaphore – Message Queues
– Mailboxes Pipes –Sockets – Remote Procedure Calls (RPCs).

Module 6

• Real time operating systems - Services- Goals – Structures - Kernel - Process
Management – Memory Management – Device Management – File System
Organization. Micro C/OS-II RTOS - System Level Functions – Task Service
Functions – Memory Allocation Related Functions – Semaphore Related
Functions. Study of other popular Real Time Operating Systems

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :2

EC 308 EMBEDDED SYSTEMS

Notes – Module 1

Embedded system- definitions

1. “An embedded system is a system that has software embedded into computer-

hardware, which makes a system dedicated for an application (s) or specific part of an

application or product or part of a larger system.”

2. “An embedded system is one that has a dedicated purpose software embedded in a

computer hardware.”

3. “It is a dedicated computer based system for an application(s) or product. It may be an

independent system or a part of large system. Its software usually embeds into a ROM

(Read Only Memory) or flash.”

4. “It is any device that includes a programmable computer but is not itself intended to be

a general purpose computer.”

5. “Embedded Systems are the electronic systems that contain a microprocessor or a

microcontroller, but we do not think of them as computers – the computer is hidden or

embedded in the system.”

BLOCK DIAGRAM OF TYPICAL EMBEDDED SYSTEMS

Embedded systems are basically designed to regulate a physical variable or the state

of some devices by sending some control signals to the Actuators/Devices connected to the

output ports of the system in response to the input signals provided by the

Sensors/Devices connected to the input ports.

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :3

A typical embedded system contains a single-chip controller which acts as the

master brain of the system. The controller can be a Micro-processor or a Micro-controller

or a Field Programmable Gate Array device (FPGA) or a Digital Signal Processor (DSP) or

an Application Specific Integrated Circuit (ASIC)/ Application specific system processor

(ASSP). Key boards, push button switches etc. are examples for user interface input devices.

LEDS, Liquid crystal displays (LCDS), Buzzers etc. are examples for common user interface

output devices.

It's not necessary that all embedded systems should incorporate these I /O user

interfaces. It depends only on the type of the application for which the embedded system is

designed. Some embedded systems do not require any manual intervention for its

operation. They automatically sense the variations in the input parameters through the

sensors connected to the input port of the system.

The information from sensors is passed to the processor after signal conditioning &

digitalization. Upon receiving the sensor data, the processor of the embedded system

performs some pre-defined operations with the help of the firmware program embedded in

the system & sends some signals to the actuators connected to the output port of the

embedded system.

For an embedded system, it is the responsibility of designer to impart intelligence to the

system. So, an embedded system without control algorithm in memory cannot be capable

of making any decision depending on the situations as well as changes in the real world.

The Memory of the embedded when is responsible for storing the control algorithm as

software program code. In most of embedded systems, this memory is a kind of Read Only

Memory (ROM) and it is not available for the user for modifications which means that the

memory protected from unwanted user interaction. The common types of memories used

in embedded systems FROM, UV-EPROM, EE-PROM & FLASH memory. Depending on the

application, the memory may vary from a few bytes to megabytes.

Sometimes the system requires temporary memory while performing arithmetic

operations and this type of memory known as "Working Memory". Random Access

Memory (RAM) used in most the systems as the working memory. Various types of RAM

like SRAM, DRAM and NVRAM are used for this purpose. The size of the RAM also varies

from few bytes to kilobytes or megabytes depending on the application.

COMPONENTS OF EMBEDDED SYSTEM HARDWARE

An embedded system has three components:

1. Hardware.

2. Application software. This may perform concurrently the series of tasks or multiple
tasks.

3. Real Time Operating system (RTOS) that supervises the application software and

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :4

provide mechanism to let the processor run a process as per scheduling by following a plan

to control the latencies. RTOS defines the way the system works. It sets the rules during the

execution of application program. A small scale embedded system may not have RTOS.

Hardware.

Processor - A Processor is the heart of the Embedded System. The main criteria for the

processor are the processing power needed to perform the tasks within the system.

Processors can be of the following categories:

➢ General Purpose Processor (GPP)

➢ Microprocessor

➢ Microcontroller

➢ Embedded Processor

➢ Digital Signal Processor / Media Processor

➢ Application Specific System Processor (ASSP)

➢ Application Specific Instruction Processors (ASIPs)

Power Source

Most embedded systems have a power supply of their own. The supply has

specific operation range of voltages in one of the following 4 power ranges: 5.0 V + 0.25 V;

3.3 V + 0.3 V; 2.0 V + 0.2 V and 1.5 V + 0.2 V. Certain systems do not have a power source

of their own, so they are connect to external power supply.

For e.g. A Graphic accelerator do not have its own power supply.

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :5

Clock Oscillator Circuit (Clocking Units)

The clock is an another basic unit of a system. A processor needs a clock oscillator

circuit as the clock controls the time for executing an instruction. The clock controls the

various clocking requirements of the CPU, system clocks and the CPU machine cycles. For

processing units, a highly stable oscillator is required as the clock signal provides the

synchronizing of all other system units.

System Timers & Real-Time Clocks (RTC)

To schedule the various system tasks and for real-time programming, a system clock or an

RTC is needed. These clocks drives the timers for various timing & counting needs in a

system. System clock & RTC are also used to obtain delays and time-outs. A timer circuit is

usually configured as the system-clock.

Another timer circuit is suitably configured as the real-time clock (RTC) for periodic

saving of time & date in the system. Microcontrollers has built-in internal timer circuits for

counting & timing devices

Timer - Embedded systems often require mechanisms for counting the occurrence of

events and for

performing tasks at regular intervals.

➢ Embedded processors are often equipped with hardware support for this functionality.

➢ Timer is a device, which counts the input at regular interval using clock pulses at its input.

➢ The count increment on each pulse and store in a register, called count register.

➢ Timer is used for generating delay and for generating waveforms with specific delay.

Serial Port - A serial port is a serial communication interface through which information

transfers in

or out one bit at a time.

➢ Serial data transmission is much more common in new communication protocols

due to a reduction in the I/O pin count, hence a reduction in cost.

➢ Common serial protocols include UART, SPI, SCI and I2C etc.

➢ In most of the embedded systems at least two serial ports are provided.

Parallel Port - A parallel port is a type of interface found on computers or embedded

systems for connecting peripherals.

The name refers to the way the data is sent; parallel ports send multiple bits of data at once.

Parallel ports require multiple data lines in their cables and port connectors, and tend to be

larger than contemporary serial ports.

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :6

Interrupt Controller - An interrupt is a signal to the processor emitted by hardware or

software indicating an event that needs immediate attention.

Interrupts allow an embedded system to respond to multiple real world events in rapid time.

By managing the interaction with external systems through effective use of interrupts can

dramatically improve system efficiency and the use of processing resources.

In an embedded system there are usually multiple interrupt sources.

These interrupt sources share a single pin. The sharing is controlled by a piece of

hardware called an interrupt controller that allows individual interrupts to be either enabled

or disabled.

System Application Specific Circuit - These are the dedicated circuits for the

implementation of the application of particular system. This may varies from one system to

other.

Reset Circuit, Power-up Reset & Watchdog-Timer Reset

Reset can be activated by an external reset circuit that activates on power-up

(switching- on) the system. The reset circuit is a simple circuit (such as an RC circuit)

whose output connects to the reset pin of the processor. To reset a processor, the reset

circuit should activate for a fixed period of a few clock cycles & then deactivate thereby

making the processor’s reset pin active and then deactivate. Reset can also be activated by

any one of the following:

(i) Software instruction (e.g. RST instruction)

(ii) Reset after a time-out by a programmed timer known as a watchdog timer

The watchdog timer is a timing device that resets the system after a predefined time-out of

a few clock cycles. A watchdog timer reset is very essential in embedded systems because it

helps in rescuing the system if the system program gets stuck due to a fault. On restart, the

system can function normally. Most microcontrollers have on-chip watchdog timers.

Reset means that the processor begins the processing of instructions from a

starting address. That address is one that is set by default in a processor on a power-up.

From that memory address (start-up addresses), program-instructions are fetched

following the reset of the processor. In certain processors, there are two start-up

addresses. One is for the power-up reset and the processor fetches the program bytes from

this address upon power-up. The other one is for after the execution of a “reset‟ instruction

or after a timeout such as a watchdog timer based reset. Here, processor fetches the bytes

program bytes from this second address on executing the reset instruction or on the

watchdog timer based reset.

Memory

An embedded system uses different types of memory modules for a wide range of

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :7

tasks such as storage of software code and instructions for hardware

a. ROM or EPROM or Flash

1. Stores 'Application' program from where the processor fetches the instruction codes

2. Stores codes for system booting, initializing, Initial input data and Strings.

3. Stores Codes for RTOS.

4. Stores Pointers (addresses) of various service routines.

b. Internal, External and Buffer RAM - The function of these memory are

1. Storing the variables during program run,

2. Storing the stacks,

3. Storing input or output buffers for example, for speech or image .

c. EEPROM or Flash - Storing non-volatile results of processing.

d. Caches memory – Functions Assigned to the Caches

1. Storing copies of the instructions, data and branch-transfer instructions in

advance from external memories and

2. Storing temporarily the results in write back caches during fast processing.

EMBEDDED PROCESSORS

1. General Purpose Processor (GPP)

A GPP is a general-purpose processor with instruction set designed not specific to

the applications. General purpose processors (GPP) are designed for general purpose

computers such as PCs or workstations. The computation speed of a GPP is the main

concern and the cost of the GPP is usually much higher than DSPs and microcontrollers. All

techniques that can increase CPU speed have been applied to GPPs. For example, GPPs

usually include on-chip cache and on-chip DMAs. Commonly used math operations are

also supported by the on-chip

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :8

hardware. GPPs are not designed for fast real-time applications. Scalar structure is

common in GPPs but rarely seen in DSPs and microcontrollers.

E.g. Microprocessor; Embedded Processor.

2. Application-Specific Integrated Circuit (ASIC)

An application-specific integrated circuit is an integrated circuit (IC) customized for a

particular use, rather than intended for general-purpose use. For example, a chip designed

to run in a digital voice recorder is an ASIC. Modern ASICs often include entire

microprocessors, memory blocks including ROM, RAM, EEPROM, flash memory and other

large building blocks. Such an ASIC is often termed a SoC (system-on-chip). Designers of

digital ASICs often use a hardware description language (HDL), such as Verilog or VHDL, to

describe the functionality of ASICs.

3. Application Specific Instruction-Set Processor (ASIP)

An application-specific instruction set processor (ASIP) is a component used in system-

on-a- chip design. The instruction set of an ASIP is tailored to benefit a specific application.

This specialization of the core provides a tradeoff between the flexibility of a general

purpose CPU and the performance of an ASIC. An ASIP is a processor with an instruction

set designed for specific applications.

E.g. Microcontroller; Embedded microcontroller; Digital Signal Processor (DSP) and

media processor; Network processor; IO processor etc.

4. Multi-core processors or multi-processor:

A multi-core processor is an integrated circuit (IC) to which two or more processors

have been attached for enhanced performance, reduced power consumption, and more

efficient simultaneous processing of multiple tasks (see parallel processing). A dual core

set-up is somewhat comparable to having multiple, separate processors installed in the

same computer, but because the two processors are actually plugged into the same socket,

the connection between them is faster. In a dual core processor in practice, performance

gains are said to be about fifty percent: a dual core processor is likely to be about one-and-

a-half times as powerful as a single core processor

The following are important considerations when selecting a processor:

(1) Instruction set

(2) Maximum bits in an operand (8 or 16 or 32)

(3) Clock frequency in MHz

(4) Processing speed in MIPS (Million Instructions Per Second)

(5) Processor ability to solve complex algorithms

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :9

5. MICROPROCESSOR

A microprocessor is a single VLSI chip that has a CPU. It may also have some other

units (e.g., caches, floating point processing arithmetic unit, pipelining units etc.) that are

additionally present for the faster processing of instructions. The CPU is a unit that fetches

& processes a set of instructions. The CPU instruction set includes instructions for data

transfer operations, ALU operations, stack operations, IO operations, program control &

sequencing operations. The important microprocessors used in the embedded systems are

ARM, 68HCxxx, 80x86 and SPARC family of microprocessors. A microprocessor is used as

general-purpose processor when large embedded software has to be located in the external

memory chips.

6. MICROCONTROLLER (MICRO-COMPUTER)

A microcontroller is a single-chip VLSI unit having limited computational

capabilities, possesses enhanced IO and a number of on-chip functional units. A

microcontroller has processor, memory & several other hardware units (peripherals) in it;

these form the microcomputer part of the embedded system. Choosing a microcontroller as

a processing unit depends upon the application-specific features in it. Microcontrollers are

particularly suited for use in embedded systems for real-time control applications with on-

chip memory & peripherals/devices. A microcontroller is used when a small embedded

software has to be located in the internal memory and when on-chip functional units such

as various types of peripherals such as ports, timer, ADC, PWM etc. are required.

7. SINGLE PURPOSE PROCESSORS

(1) Coprocessor (for e.g., math coprocessor, floating point processor etc.)

(2) Graphics processor: - An image consists of a no. of pixels.

- A separate graphics processor is required for applications such as gaming, display

from graphics memory and rotate an image or its segments.

(3) Pixel coprocessor: - A pixel coprocessor is required in digital cameras for

operation on images such as rotate right, rotate-left, rotate- up, rotate-down, shift to next,

shift to previous.

(4) Encryption engine: - A suitable algorithm runs in this processor to encrypt data for

secure transmission.

(5) Decryption engine: - A suitable algorithm runs in this processor to decrypt the

encrypted data at receiver’s end.

(6) A discrete cosine transformation (DCT) and inverse transformation (DCIT)

processor is required in speech and video processing.

(7) Protocol stack processor: - A protocol stack required before an application data is

sent to a network.

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :10

- At the receiver’s end, the protocol stack is received and application data is accepted

accordingly. (E.g. for Wi-Fi protocol)

- MP3 decompression is done before retrieving or playing files.

(8) Network processor:

- A network processor’s functions are to establish a connection, finish, send & receive

acknowledgements, send and receive retransmission requests and check and correct

received data frame errors.

- The network processor’s functions include all protocol related processing functions.

(9) Accelerator

- For e.g., Java codes accelerator is a coprocessor that accelerates computations by

taking actions that are in Java programs.

(10) Controller

- E.g., DMA Controller (Direct Memory Access), bus control, peripheral management

(11) CODEC (Coder & Decoder)

- A CODEC is a processor circuit encodes input bits or decodes the encoded information

into a complete set of bits or original signals. The CODEC functions as a compression &

decompression unit signals such voice, speech, image or video signals

JPEG CODEC:- This is a processor for jpg compression and decompression.

MPEG CODEC:- MPEG3 CODEC is a processor for mp3 compression of audio/video data

streams for storing or transmitting

EMBEDDED SOFTWARE IN A SYSTEM

The software program code (instruction codes) is the brain of an embedded system.

An embedded system processor executes software that is specific to a given application.

The program codes are placed in the ROM (or flash memory or PROM) for the execution of

tasks when the system runs. This final “machine implementable software” is called the

“ROM image” that is being embedded into the ROM similar to an “image” in an “image

frame”. Each program code is in bytes format & these bytes are saved at each address of the

system memory (ROM). The code bytes are required at each ROM address to execute the

tasks.

So, a machine implementable software file (ROM image) is similar to a table having

many rows and only two columns; 1st column for memory address & 2nd column for

corresponding code byte in a memory address. By changing ROM image, the same

hardware platform will work differently.

1) MACHINE-CODE BASED CODING

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :11

In machine-code based coding, the programmer defines the machine code

bytes corresponding each memory addresses for a program.

- Machine-code based coding is done only in specific situations because it is time

consuming and the programmer must have to understand the processor

instructions set and their corresponding machine codes

2) CODING IN ASSEMBLY LANGUAGE

Small programs can be coded in assembly language after understanding the

processor & its instruction set. “Assembler” is the software used for converting the codes

written in assembly language (similar to a compiler for high level language like C, Java etc) .

Assembly language coding is extremely useful for configuring devices like ports, ADC, DAC

etc. But, Assembly language based programming is also very time consuming while making

larger programs/ codes. Full coding in assembly may be done only for a few simple, small-

scale embedded systems.

Figure: shows the process of converting an assembly language program into machine

implementable software file and then finally obtaining a ROM image file.

Assembler, Linker, Locator & Loader are the software required for the whole process.

(a) First step is called “Assembling” in which assembler software translates the

assembly software into the machine codes.

(b) Next step is called linking; a linker links these codes (if necessary) with the other codes

taken from the library.

(c) For a final program, a no. of other codes are to be linked together.

For eg., there are the standard codes for delay function (eg. delay() in Arduino). If ‘delay()’

is included in the program, the program codes for the delay() must link with the final

assembled code. The linked file in binary is known as executable file (a file with ‘.EXE’

Data Bytes
Embedded system

ROM memory

From library

needed

Machine

Codes

Bytes for

linked

programs

Device (ROM)

Programmer

(Burner)

Machine Codes ready

for locating at various

addressed

Machine

specific

assembly

language

program

1

Assembler

Machine Codes

for the program

at various

addressed
 3

2

Linker

Loader

.

R
e

al
lo

ca
ti

n
g

ad
d

re
ss

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :12

extension).

(d) In embedded systems, the next step after linking is the use of a “Locator” software

which locates the already fixed ROM addresses. For eg., in a memory-mapped IO scheme; IO

port addresses, IO devices addresses etc. are permanently assigned to some memory

locations.

- The locator software “re-allocates” the memory addresses in a linked file & creates a file

with permanent memory allocation for each of the code bytes in a standard format

- Eg for such a standard file format is “Intel .HEX file format”.

(e) In the next step, the “Loader” software performs the task of placing/ loading the code

bytes as an “image to be placed in ROM” by finding the exact available ROM memory

addresses

- For many processors, the available memory addresses may not start from “0000H”.

- The “loader” finds the appropriate “start address” for the final program codes.

(f) Lastly “Programmer Device/ Equipment” takes as input the ROM image file.

For eg. (in .HEX format) & “writes” the image as byte by byte into the memory. So the

process of placing the codes into ROM or flash memory is also called “Burning” into the

ROM/flash.

3) CODING IN HIGH LEVEL LANGUAGE

For large software programs development, high-level language like C, C++, visual C++,

Java etc. are used. ‘C‟ is usually the preferred language. The programmer needs to

understand only the hardware organization of the whole embedded system when coding in

high level language

Figure shows the process of converting a C program into the ROM image file.

-First, the compiler software generates the object codes (file with .OBJ extension). The

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :13

compiler assembles the codes according to the processor instruction set

- Before linking, the compiler may use a “Code-Optimizer” that optimizes the codes by

removing the “redundant/ unnecessary variables or steps” written in the program

- The linker links the object codes with other standard program codes in the program

(similar to the linking step in assembling process). For eg, the linker includes the program

codes for the pre- defined functions like printf(), delay() etc

- Codes for some standard devices & the device control management also link at this

stage; For eg., a printer device management & its driver codes

- After linking, the other steps for creating a file for ROM image are same as that discussed

in previous section of assembling process (Locating, Loading & Burning).

4) DEVICE DRIVERS

- A device driver is a software written in a high level language that controls

functions/actions of a device such as opening the device, “connecting the device to other

devices”, “reading the device”, “writing to the device” & “closing the device”

- Each of the device driver software can access a parallel port, serial port, keyboard, mice,

disk, network, display, file etc. at specific addresses.

- A device driver software controls 3 functions,

(i) Initializing a device by placing appropriate bits at the control register of the device.

(ii) Calling an Interrupt Service Routine upon setting up a status flag in the status register

of the device for running the ISR.

(iii) Re-setting the status flag after an interrupt service is completed Device Manager
Software

- A device manager software provide programs for

• Detecting the presence of devices connected to the system (both virtual & physical)

• Listing out the available devices connected to the system

• Initializing the devices testing the devices

• Allocates “Port Addresses” for the various physical & virtual devices (Eg. COM2, COM3

etc for virtual serial ports in Windows)

ARM PROCESSOR

Advanced RISC machine (ARM) is the first reduced instruction set computer (RISC)

processor for commercial use, which is currently being developed by ARM Holdings.

RISC:- A Reduced Instruction Set Computer (RISC) is a microprocessor that has been

designed to perform a small set of instructions, with the aim of increasing the overall speed

of the processor. The RISC concept first originated in the early 1970's when an IBM

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :14

research team proved that 20% of instruction did 80% of the work. The RISC architecture

follows the philosophy that one instruction should be performed every clock cycle.

Comparison between CISC and RISC

CISC RISC

Larger set of instructions. Easy to program Smaller set of Instructions. Difficult to

program.

Simpler design of compiler,
considering

larger set of instructions.

Complex design of compiler.

Many addressing modes causing
complex

instruction formats.

Few addressing modes, fix instruction
format.

Instruction length is variable. Instruction length varies.

Higher clock cycles per second. Low clock cycle per second.

Emphasis is on hardware. Emphasis is on software.

Control unit implements large instruction
set

using micro-program unit.

Each instruction is to be executed by
hardware.

Slower execution, as instructions are to
be

read from memory and decoded by the

decoder unit.

Faster execution, as each instruction is to be

executed by hardware

Pipelining is not possible. Pipelining of instructions is possible,

considering single clock cycle.

Mainly used in normal pc‘s, workstations
&

servers.

Mainly used for real time applications.

ARM9

• The ARM9TDMI is a member of the ARM family of general-purpose microprocessors.

• The ARM9TDMI is targeted at embedded control applications where high

performance, low die size and low power are all important.

• The ARM9TDMI supports both the 32-bit ARM and 16-bit Thumb instruction sets,

allowing the user to trade off between high performance and high code density.

• ARM and Thumb are two different instruction sets supported by ARM cores with a

“T” in their name. Thumb mode allows for code to be smaller, and can potentially be

faster if the target has slow memory

• The ARM9TDMI supports the ARM debug architecture and includes logic to assist in

both hardware and software debug.

• The ARM9TDMI supports both bidirectional and unidirectional connection to

external memory systems.

• The ARM9TDMI also includes support for coprocessors.

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :15

• The ARM9TDMI processor core is implemented using a five-stage pipeline

consisting of fetch, decode, execute, memory and write stages.

• The device has a Harvard architecture, and the simple bus interface eases

connection to either a cached or SRAM-based memory system.

Advanced RISC Machine (ARM) Processor Fundamentals

Like all RISC processors, the ARM processor also uses an architecture known as the “Load-

Store Architecture” which means ARM has only two instructions for transferring data in &

out of the processor & its memory.

The two instructions are

(i) ‘LOAD’ Instruction:- Copy data from Memory to CPU registers in ARM core

(ii) ‘STORE’ Instruction :- Copy data from CPU registers of ARM core to Memory.

• In ARM, there are no other instructions that directly manipulate data in the memory.

• Fig. shows a Von-Neumann implementation of ARM core, in which the instructions

& the data share the same bus (A Harvard implementation of ARM core has two

separate buses of instructions & data)

• So, Data/ Instructions enters the processor core through the ‘Data Bus’ . The

‘Instruction Decoder’ translates instructions before they are executed.

• Data items are placed in the ‘Register File’, which is a CPU register bank made up of

16 general purpose registers (r0 to r15) in which each register has a size of 32-bit.

• The ARM core is a 32-bit processor in which the general purpose registers (r0 - r15)

of ‘Register_File’ can hold only 32-bit data values. The ‘Sign Extend Hardware’

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :16

converts the signed 8 or 16-bit data inputs to 32-bit data values while they read

from memory

• ARM instructions have two Source Registers : ‘Rn’ & ‘Rm’.One Destination Register

:‘Rd’(also called as Result Register).

• The source operands are read from the register file using internal buses ‘A_bus’ &

‘B_bus’ respectively.

• The ALU or MAC(Multiply accumulator) unit of ARM takes the source data in the

registers ‘Rn’ & ‘Rm’ through A bus & B bus for computing the result.

• After passing through the functional units (ALU or MAC), the result in ‘Rd’ register is

written back to the register file through the ‘Result Bus’.

• Here, the data in one of the source register ‘Rm’ can also be shifted in a

‘Barrel_Shifter’ unit before it enters the ALU . Using the combined operation of the

Barrel Shifter & ALU, the ARM can generate a wide range of expressions &

addresses.

• In ARM, the ALU also generates the memory addresses that is to be placed in the

address register for broadcasting the address through the ‘Address Bus’.

• The ‘Incrementer’ is used to update the address register for a data transfer

operation from sequential memory locations.

ARM 9 ARCHITECTURE

The main parts of the ARM processor are:

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :17

1. Register file: The processor has a total of 37 registers made up of 31 general 32 bit

registers and 6 status registers

2. Booth Multiplier

3. Barrel shifter

4. Arithmetic Logic Unit (ALU)

5. Control Unit.

Registers

The processor has a total of 37 registers made up of 31 general 32 bit registers and

6 status registers. At any one time 16 general registers (R0 to R15) and one or two status

registers are visible to the programmer. The visible registers depend on the processor

mode. In all modes 16 registers, R0 to R15, are directly accessible. All registers except R15

are general purpose and may be used to hold data or address values. Register R15 holds the

Program Counter (PC). A seventeenth register (the CPSR - Current Program Status

Register) is also accessible. It contains condition code flags and the current mode bits and

may be thought of as an extension to the PC. R14 is used as the subroutine link register and

receives a copy of R15 when a Branch and Link instruction is executed.

Program status register:- It contains the processor flags (Z, S, V and C). The modes bits

also exist in the program status register in addition to the interrupt and fast interrupt disable

bits

Some special registers: Some registers are used like the instruction register, memory

data read and write register and memory address register

Multiplexers: Many multiplexers are used to control the operation of the processor buses

Arithmetic Logic Unit (ALU) :- The ALU has two 32-bits inputs. The first comes from the

register file while the other comes from the shifter. ALU outputs modify the status register

flags.

Booth multiplier:- The multiplier has three 32-bit inputs. All the inputs come from the

register file. The multiplier output is only the 32 least significant bits of the product.

Barrel shifter:- A barrel shifter is a digital circuit that can shift a data word by a specified

number of bits without the use of any sequential logic, only pure combinational logic. The

barrel shifter has a 32-bit input to be shifted. This input is coming from the register file or it

could be immediate data. The shifter has other control inputs coming from instruction

register. Shift field in the instruction controls the operation of the barrel shifter. This field

indicates the type of shift to be performed (logical left or right, arithmetic right or rotate

right). The amount by which the register should be shifted is contained in an immediate

field in the instruction or it could be the lower 6 bits of a register in the register file.

Control Unit :- For any microprocessor, control unit is the heart of the system. It is

responsible for the system operation and so the control unit design is the most important

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :18

part in the hole design. Control unit is usually a pure combinational circuit. The processor

timing is also included in the control unit.

Pipeline implementation

The ARM9TDMI implementation uses a five-stage pipeline design. These five stages are:

1. Instruction fetch (F):- The instruction is fetched from memory and placed in the

instruction pipeline

2. Instruction decode (D):- The instruction is decoded and register operands read from

the register files. There are 3 operand read ports in the register file so most ARM

instructions can source all their operands in one cycle

3. Execute (E):- An operand is shifted and the ALU result generated. If the instruction is a

load or store, the memory address is computed in the ALU

4. Data memory access (M):- Data memory is accessed if required. Otherwise the ALU

result is simply buffered for one cycle

5. Register write (W):- The result generated by the instruction are written back to the

register file, including any data loaded from memory

ARM Bus Organization -AMBA

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :19

Figure: ARM Bus structure

ARM has created a separate bus specification for single-chip systems. The

AMBA[Advanced Microcontroller Bus Architecture] bus [ARM99A] supports CPUs,

memories, and peripherals integrated in a system-on-silicon.

The AMBA specification includes two buses.

The AMBA high-performance bus (AHB) is optimized for high-speed transfers and is

directly connected to the CPU. It supports several high performance features: pipelining,

burst transfers.

Burst mode is a temporary high-speed data transmission mode used to facilitate

sequential data transfer at maximum throughput. Burst mode data transfer rate (DTR)

speeds can be approximately two to five times faster than normal transmission protocols.,

Split transactions:- the Split and Retry responses are used by slaves which require a

large number of cycles to complete a transfer. These responses allow a data phase transfer

to appear completed to avoid sharing the bus, but at the same time indicate that the

transfer should be re- attempted when the master is next granted the bus.

The difference between them is that a SPLIT response tells the Arbiter to give priority

to all other masters until the SPLIT transfer can be completed (effectively ignoring all

further requests from this master until the SPLIT slave indicates it can complete the SPLIT

transfer), whereas the RETRY response only tells the Arbiter to give priority to higher

priority masters.

A SPLIT response is more complicated to implement than a RETRY, but has the

advantage that it allows the maximum efficiency to be made of the bus bandwidth.

Multiple bus masters.

The AMBA bus specification supports multiple bus masters on the high performance

ASB. A simple two wire request and grant mechanism is implemented between the arbiter

and each bus master. The arbiter ensures that only one bus master is active on the bus and

also ensures that when no masters are requesting the bus, a default master is granted.

The specification also supports a shared lock signal. This allows bus masters to indicate

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :20

that the current transfer is indivisible from the following transfer and prevents other bus

masters from gaining access to the bus until the locked transfers have completed. A bridge

can be used to connect the AHB[AMBA High-performance Bus] that is a single clock-edge

protocol, to an AMBA peripherals bus(APB). This bus is designed to be simple and easy to

implement; it also consumes relatively little power. The AHB assumes that all peripherals

act as slaves, simplifying the logic required in both the peripherals and the bus controller.

It also does not perform pipelined operations, which simplifies the bus logic.

Embedded Product Development Life Cycle (EDLC)

EDLC is Embedded Product Development Life Cycle:- It is an Analysis, Design,

Implementation based problem solving approach for embedded systems development.

Different Phases of EDLC: The following figure depicts the different phases in EDLC:

Need :- The need may come from an individual or from the public or from a company.

Conceptualization :- Defines the scope of concept, performs cost benefit analysis and

feasibility study and prepare project management and risk management plans.

Analysis:- The product is defined in detail with respect to the inputs, processes, outputs,

and interfaces at a functional level.

Design :- The design phase identifies application environment and creates an overall

architecture for the product.

Development and Testing :- Development phase transforms the design into a realizable

product.

Deployment :- Deployment is the process of launching the first fully functional model of

the product in the market.

Support :- The support phase deals with the operational and maintenance of the product in

the production environment.

Upgrades :- Deals with the development of upgrades (new versions) for the product which

is already present in the market.

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :21

Retirement/Disposal :- The retirement/disposal of the product is a gradual process. This

phase is the final phase in a product development life cycle where the product is declared

as discontinued from the market.

Waterfall Model

· Linear or waterfall model is one of the EDLC models which adopted in most of the olden

systems.

In this approach each phase of EDLC (Embedded Development Product Lifecycle) is

executed in sequence. It establishes analysis and design with highly structured

development phases. The execution flow is unidirectional. The output of one phase

serves as the input of the next phase. All activities involved in each phase are well

planned so that what should be done in the next phase and how it can be done. The

feedback of each phase is available only after they are executed. It implements extensive

review systems to ensure the process flow is going in the right direction. One significant

feature of this model is that even if you identify bugs in the current design the

development process proceeds with the design. The fixes for the bug are postponed till

the support phase.

Advantages

Product development is rich in terms of: · Documentation, Easy project management,

Good control over cost & Schedule

Drawbacks

EC308 Embedded systems NCERC,PAMPADY

Module 1, ECE

Page No :22

· It assumes all the analysis can be done without doing any design or implementation

· The risk analysis is performed only once.

· The working product is available only at the end of the development phase

· Bug fixes and correction are performed only at the maintenance / support phase of

the life cycle.

Challenges in Embedded Systems

1. Amount and type of hardware needed. Optimizing various hardware elements for a

particular design.

2. Taking into account the design metrics

Design metrics examples –power dissipation, physical size, number of gates and

engineering, prototype development and manufacturing costs.

3. Optimizing the Power Dissipation:- Clock Rate Reduction and Operating Voltage Reduction

4. Disable use of certain structural units of the processor to reduce power dissipation the

processor to reduce power dissipation. Control of power requirement, for example, by

screen auto‐brightness control

5. Process Deadlines:- Meeting the deadline of all processes in the system while keeping

the memory, power dissipation, processor clock rate and cost at minimum is a challenge.

6. Flexibility and Upgradeability:- Ability to offer the different versions of a product for

marketing and offering the product in advanced versions later on.

7. Reliability:- Designing reliable product by appropriate design and thorough testing,

verification and validation is a challenge.

8. Testing, Verification and Validation:- Testing – to find errors and to validate that the

implemented software is as per the specifications and requirements to get reliable product.

MODULE 2

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 2 Page No :1

Subject : EC 308 EMBEDDED SYSTEMS

Module 2

Communication Protocol

A protocol is a standard adopted, which tells the way in which the bits of a frame must be

sent from a device (or controller or port or processor) to another device or system

UART (Universal Asynchronous Receiver Transmitter)

UART is a simple half-duplex, asynchronous, serial protocol. It makes a simple

communication between two equivalent nodes and any node can initiate communication. Since

connection is half-duplex, the two lanes of communication are completely independent. Its

parameters (format, speed ...) are configurable so it is called universal. It doesn’t have a clock,

so it is called asynchronous.

The speed of communication (measured in bauds) is predetermined on both ends. A general

rule of thumb is to use 9600 bauds for wired communication. Maximum speed is 115200. The

UART implements error-detection in the form of parity bit. Parity bit is HIGH when number of

1’s in the Data is odd and it is LOW when number of 1’s in the Data is even.

Handshaking Signals’ in UART based serial communication

Figure : The handshaking signals of UART.

The following are the names of the five handshaking signals defined for the UART based

communication between a ‘Computer Terminal devices’ to an external ‘Modem’ device

(1) DCD (Data Carrier Detect)

(2) DSR (Data Set Ready)

(3) DTR (Data Terminal Ready)

(4) RTS (Request to Send)

(5) CTS (Clear to Send)

- Two handshaking signals (DCD & DSR) are generated from the modem side

- Three handshaking signals (DTR, RTS & CTS) are generated by the terminal.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 2 Page No :2

-Here, ‘TxD’ & ‘RxD’ are the data transmitting & data receiving signal lines/ pins of the

‘computer terminal device.

DCD (Data Carrier Detect) :-This handshaking signal will be raised from a ‘modem’ towards

the ‘computer terminal device’ to which that modem is connected. The modem device asserts a

DCD signal to inform the ‘terminal device’ that a ‘carrier signal’ has been detected & the contact

between this modem to an another modem has been established successfully

DSR (Data Set Ready) :- This is another handshaking signal will be raised from a ‘modem’

towards the ‘terminal device’. When the ‘modem’ is turned-on after a power off (or sleep) & if it

is ready to communicate, it assert DSR signal to indicate the terminal

DTR (Data Terminal Ready) :- This handshaking signal will be raised from the ‘terminal

device’ towards a ‘modem’ connected to it. When ‘terminal’ is ‘turned-on’, it sends DTR signal

to indicate the’ modem’ that it is ‘ready for a communication’

RTS (Request to Send) :- This handshaking signal will be raised by the ‘terminal device’. When

the terminal device has a ‘Data Byte’ to transmit, it assert RTS signal to indicate the modem that

it has a byte of data to transmit

CTS (Clear to Send) :- This handshaking signal will also be raised from the terminal device’s

side. When the ‘terminal’ has room (or storage space) for storing a data that is going receive, it

sends out CTS signal to modem to indicate that it can receive the data byte now

Serial Data Transmission in UART

The serial transmission in UART is shown in the figure. The start and stop bits are identified

based on the signal state. In between that the data transmission is obtained.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 2 Page No :3

UART mode is as follows

UART having different mode of states that are

1. Idle State:- A line non-return to zero (NRZ) state. It means in idle state the logic state is 1

at the serial line.

2. Byte start signalling flag bit:- Start bit 1 to 0 transition, which receiver detect at the

middle of bit interval T

3. Data bits :- After start bit; 8 bits transmitted on TxD line and received on RxD line

during period of 8 T (receiver detect at the middle of each bit interval T), In earlier circuits,

the number of data bits could also be set 5, 6 or 7 in place of 8

4. Control or error detect bit:- One bit- P-bit is optional. P bit can be used to detect parity

error. P-bit can be used to interpret the preceding byte not as data but as address or command

or parity as per the processing circuit for serial bits at receiver

5. Byte end flag bit :- Minimum one stop bit at Logic 1 [In earlier circuits, the number of

stop bits could also be set 1½ or 2 in place of 1]

6. Disconnected State :- Zero (Z) state. Disconnected serial line logic state is 0

UART Frame structure

Fig : UART Frame structure

The frame structure of UART is shown below. A start bit at the initial position indicates

that a communication is starting. Then the Data bits are follows. After that a parity bit for error

checking and at last a stop bit to indicate the end of transmission.

Advantages of UART

– Only uses two wires

– No clock signal is necessary

– Has a parity bit to allow for error checking

Disadvantages of UART

– The size of the data frame is limited to a maximum of 9 bits

– Doesn’t support multiple slave or multiple master systems

– The baud rates of each UART must be within 10% of each other

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 2 Page No :4

HDLC (High-level Data Link Control)

HDLC is a standard protocol for the data link network. For synchronous communication

between two data link layers on a network. There are two formats Standard HDLC and extended

HDLC for 28 and 216 destination devices or systems, respectively .

Fig : Sequence of bits in a HDLC frame

The functions of the bits in the HDLC frame structure are

1. Flag: - frame start with a 8 bits flag bits which indicate the starting of the frame. The Flag

bits at start are “01111110”.

2. Address - 8 bits in Standard HDLC format and 16 bits in extended format

3. Control field :- The control field distinguishes between the three different types of frames

used in HDLC, namely information, control and unnumbered frames. The first one or two

bits of the field determine the type of frame. The field also contains control information

which is used for flow control and link management.

4. Information field :- The information field does not have a length specified by HDLC. In

practice, it normally has a maximum length determined by a particular implementation.

Information frames (also known as I-frames) are the only frames that carry information bits

which are normally in the form of a fixed-length block of data of several kilobytes in length.

All other types of frames (control and unnumbered frames) normally have an empty

information field.

5. Frame check sequence:- The FCS field contains error-checking bits, normally 16 bit

with a provision for increasing this to 32. 8 bits in Standard HDLC format and 16 bits in

extended format

HDLC Frame types

□ The different types of frame are distinguished by the contents of the control field.

□ The structure of all three types of control field is shown in Figure.

bits

Where N(S) = Sequence number, N(R)= Receive sequence number, F=Function bits

P=poll final bit used for polling in normal response mode

Frame Type 1 2 3 4 5 6 7 8

Information 0 N(S) P N(R)

Supervisory 1 0 F P N(R)

Unnumbered 1 1 F P F

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 2 Page No :5

Information frames

□ An I-frame is distinguished by the first bit of the control field being a binary 0.

□ The control field of an I-frame contains both a send sequence number, N(S), and a receive

sequence number, N(R), which are used to facilitate flow control.

□ N(S) is the sequence number of frames sent and N(R) the sequence number of frames

successfully received by the sending node prior to the present frame being sent.

□ Thus the first frame transmitted in a data transfer has send and receive sequence numbers

0,0.

□ I-frames also contain a poll/final (P/F) bit (as do other frames). This acts as a poll bit when

used by a primary station and a final bit by a secondary.

□ A poll bit is set when a primary is transmitting to a secondary and requires a frame or

frames to be returned in response, and the final bit is set in the final frame of a response.

Supervisory frames

□ Supervisory frames are distinguished by the first 2 bits of the control field being 1 0.

□ These frames are used as acknowledgements for flow and error control.

□ Supervisory frames contain only a receive sequence number since they relate to the

acknowledgement of I-frames and not to their transmission.

□ They also contain two function bits which allow for four functions as shown in Table 2.1

which lists the supervisory commands/responses.

Unnumbered frames

□ Unnumbered frames do not contain any sequence numbers (hence their name) and are used

for various control functions.

□ They have five function bits which allow for the fairly large number of commands and

responses.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 2 Page No :6

SCI Port (Serial Connect Interface)

SCI is a UART protocol based asynchronous, Full-duplex serial communication port . SCI is

programmable for transmission and reception mode of communication

Features of the SCI port of ‘68HC11/12’ Microcontroller

1. UART based Asynchronous Full-Duplex Communication Port

2. Programmable Baud Rate

 A baud rate can be selected among 32 possible ones by the programming three bits

called ‘Rate Bits’ & other two bits called ‘Pre-Scaling bits’ of the associated serial

communication control registers (SCC1 & SCC2) of microcontrollers

 Baud rates cannot be programmed separately for individual ‘Serial In’ (Reception) &

‘Serial Out’ (Transmission) signal lines

 SCI has two control register bits, T8 and R8 for the inter processor communication in

11-bit format.

3. Programmable Wake-Up Feature for Multi-processor Communication

 The SCI receiver of microcontroller(‘68HC11/12) has a ‘Wake-Up feature’, that can

be programmed by an RWU (Receiver Wake-Up Unavailable) bit

 Wake up feature enabled if RWU is set, and is disabled if RWU is reset.

 If RWU if set, then the receiver of a slave does not interrupt by the succeeding

frames.

 Number of processors can communicate on the SCI bus using control bits RWU, R8

and T8

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :7

SPI Bus (Synchronous Peripheral Interface)

SPI is a Full‐duplex Synchronous communication protocol. SPI works with Master-Slave

mode. It is a ‘master-slave’ protocol also, in the sense that the master is the unit that generates

the clock signal & initiates the data transfer. SPI is a ‘Single Master Multi-Slave’ system in

which only one of the slave is to be enabled at a time. The signals used in SPI are listed in the

figure below.

SCLK is the serial clock from master.

□ MOSI is the output from master.

□ MISO is the input to the master.

□ Device selection as master or slave can be done by applying a signal to input SS pin.

When this pin is 0, then the device act as Master. When this pin is 1, then the device act as

slave.

□ SPI is programmable for defining the occurrence of positive and negative edges within an

interval of bits at serial data out or in

□ SPI is also programmable for open-drain or totem pole output from a master to a slave.

SPI I/O Registers

Three registers control and monitor SPI operations:

1. SPI Control Register (SPCR)

2. SPI Status and Control Register (SPSCR)

3. SPI Data Register (SPDR)

SPI Modes

• Master mode

– Only a master SPI initiates a transmission

– Data is shifted out via Master Out Slave In (MOSI) line

– Data is shifted in via Master In Slave Out (MISO) line

– Transmission ends after 8 cycles of serial clock (SPSCK)

• Slave Mode

– Transfer synchronized to serial clock (SPSCK) from Master

– Data is shifted in via the Master Out Slave In (MOSI) line

 – Data is shifted out via the Master In Slave

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :8

SPI Control Register

⚫ SPI Control Register (SPCR)

⚫ SPI Master (SPMSTR):-Selects master mode or slave mode operation

1 = Master mode, 0 = Slave mode

⚫ SPI Master and Slave need identical clock polarity and phase settings

⚫ Clock Polarity (CPOL):- Determines clock state when idle

⚫ Clock Phase (CPHA)

1 = Begin capturing data on second clock cycle edge

0 = Begin capturing data on first clock cycle edge*

-When CPHA = 0, the SS must be disserted and reasserted between each

transmitted byte

 SPI Enable (SPE) :- 1 = SPI module enabled, 0 = SPI module disabled

Recommend disabling SPI before initializing or changing clock phase, clock polarity, or

baud rate

SPI Interrupts

⚫ SPI Receiver Interrupt Enable Bit (SPRIE) :- Interrupt generated when SPRF flag set

⚫ SPI Transmit Interrupt Enable (SPTIE)) :- Interrupt generated when SPTE flag set

1= Interrupt enabled

0 = Interrupt disabled

⚫ Direct Memory Access Select (DMAS)

⚫ Selects either DMA or CPU interrupt request

⚫ SPRIE/SPTIE bits still enable or disable interrupts

SPI Data Register

• SPI Data Register (SPDR)

– Read/Write buffer for SPI data

– Write operation

• Writes data to transmit data register

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :9

– Read operation

• Reads data in receive data register

SPI Baud Rate

SPI Status and Control Register (SPSCR)

⚫ SPI rate select bits (SPR1, SPR0)

⚫ Sets the Master SPSCK clock frequency

⚫ No effect in the Slave devices

SPI Status Flags

SPI Status and Control Register (SPSCR)

SPI Receiver Full (SPRF)

• Set when a byte is shifted from shift register to the receive data register

• Cleared by reading SPSCR then reading SPDR

1 = Receive data register full

0 = Receive data register not full

SPI Transmitter Empty (SPTE)

• Set when a byte is transferred from SPDR to the shift register

• Cleared by reading SPDR register

1 = Transmit data register empty

0 = Transmit data register not empty

SPI Initialization sequence

1) Initialize SPI clock frequency (SPR1 and SPR0 in SPSCR)

2) Set clock configuration (CPOL and CPHA bits in SPSCR)

3) Select Master/Slave operation (SPMSTR in SPCR)

4) Enable interrupts if desired (SPTIE, SPRIE in SPCR)

5) Enable the SPI system (SPE in SPCR)

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :10

– Should enable Master before Slaves

Master to Slave Transfer

Simple Polled operation

1) Initialize the SPI

2) Select SS to Slave device (hardware dependent)

3) Write byte to SPDR

4) Wait for SPI Transmitter Empty Flag (SPTE)

5) Read the SPDR

6) Release SS to Slave (hardware dependent)

SERIAL BUS COMMUNICATION PROTOCOLS

The commonly used serial bus communication protocols are USB Bus., I²C Bus, CAN Bus

Universal Serial Bus (USB)

USB is used for serial transmission and reception between host and serial devices. It is an

‘Asynchronous Serial Bus’ between a ‘USB Host Controller’ & no. of interconnected ‘USB

peripheral Devices’. It mainly used for the networking of I/O devices like scanner, printer etc. in

a PC

Features of USB protocol

(i) Easy Attaching & Detaching of USB devices

(ii) ‘Bandwidth Sharing’ among USB devices

(iii) Bus-Powered or Self-Powered Devices

⚫ USB 1.0 – 1.5 Mbps(low speed) to 12 Mbps(full speed).

⚫ USB 2.0 – 480 Mbps(high speed).

⚫ USB 3.0 – 5 Gbps.(super speed)

⚫ USB 3.1 - 10 Gbps.(super speed plus)

USB Host & USB Devices

In USB protocol defines two components, a ‘Host’ which is the ‘Bus Master’ & many

‘Devices’ which are ‘Slaves’. USB host controls the USB bus & there is only one host per bus.

So, a USB host is a ‘controller’ that can function as bus master for connecting peripheral devices

such as pen drive like flash memory devices, digi cam, printer, mouse etc

In USB the host can only act as the bus master by initiating data transfers & the

communication takes place between the host & a USB device. But no direct communication

possible between the USB devices. By using USB protocol several peripheral Devices/ Nodes

can be interconnected using a ‘Host Controller’ with the help of USB port ‘driver’ software. Up

to 127 devices (including USB hubs) can be connected to a single host controller. The limitation

of 127 devices is because the ‘address field’ in the USB protocol data packet has only 7 bits of

length

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :11

Host connection to the devices or nodes

_ Using USB port driving software and host controller,

_ Host computer or system has a host controller, which connects to a root hub.

_ A hub is one that connects to other nodes or hubs.

_ A tree- like topology

Tree Topology of USB ‘Hubs’ & ‘Nodes

A USB system consists of a USB host controller & multiple USB devices connected in a

tree-fashion with the help of special devices called ‘USB Hubs’. A tree-like topology forms of

hub devices & nodes as follows. The ‘Root Hub’ can connect to the hubs & nodes at ‘Level-1’.

A hub at ‘Level-1’ can connect to other hubs & nodes at ‘Level-2’ and so on up to a max. of 6

levels. Only USB devices will be present at the last level of the tree.

(1) One wire carries +5 V supply (called as VBUS)

(2, 3) Two serial signal wires (‘Data+’ & ‘Data-‘) forming a Twisted Pair Cable

(4) One wire for ground (GND)

The length of any USB cable is limited to ‘5 Meters’

USB Protocol

– USB is entirely ‘host initiated protocol’.

– All USB peripheral devices are slaves that obey the protocol.

– At a time, either one device or the host can transmit data.

– When the host transmits & if there are many devices in the system, only the

‘device’ that is ‘addressed by the host’ can respond.

– If the address broadcasted by the host doesn’t matches with the device’s address,

the USB device simply ignores the communication.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :12

• Data Transfer through ‘USB Packets’

– Here, the data transfer is done using ‘USB packets’.

– The ‘USB Data packet’ starts with a ‘Synchronous Code’ called as a ‘SYNC’

pattern.

– The clock for data transfer is encoded & inserted in the SYNC field.

– The receiver USB device synchronizes to the transmitter by recovering the clock

continuously from the SYNC field of each packet.

– SYNC field is followed by a ‘PID Field’ (Packet Identifier) & ‘Data Bytes’ of the

packet.

– After data bytes, a CRC Field (Cyclic Redundancy Check) may present for error

detection.

– A USB packet ends with an ‘End of Packet’ signal

⚫ As in any serial protocol, in USB also data is sent ‘one bit at a time’.

There are four ways in which data transfer can be done in USB protocol depending on the type of

data

(a) Controlled data transfer

(b) Bulk data transfer

(c) Interrupt driven data transfer

(d) Iso-Synchronous transfer

• Control Transfer

– A control transfer is the one & only ‘bi-directional’ data transfer type & all the

other transfer types are ‘uni-directional’.

– A control transfer is used for the initial configuration of a USB device by the host.

– Here, the host will do activities such as to read information about a device, set a

device’s address, select the settings/configurations related to the driver software

etc.

• Bulk Transfer

– Bulk transfers are intended for situations where the rate of data transfer isn’t

critical.

– They are designed to transfer large amounts of data with error-free delivery.

– Here, the max. rate of data transfer is not guaranteed at every instant of data

transfer

• Interrupt Transfer

– Interrupt transfers are meant for USB devices that needs only a ‘periodic

attention’ from the host.

– Low speed USB devices like computer mouse & keyboard use this type of

transfer - ‘No interrupts’ are involved here; But the data transfer is similar to an

interrupt based system which means that data should be transferred without delay.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :13

• Isochronous Transfer –

– The meaning of the term ‘isochronous’ is ‘at regular intervals’.

– This is type of asynchronous data transmission done at regular intervals.

– Here, sending & receiving of data is done in equal time increments.

– Isochronous transfers have guaranteed time of data delivery.

– But here there is no error correcting facility because as per the protocol there is no

provision for the ‘automatic re-transmitting’ of data received with errors.

– High speed real-time application like audio & video streaming can be done using

this data transfer method

CAN Protocol (Controller Area Network)

 An automobile uses a no. of devices & embedded controllers that are located &

distributed inside a car such as devices/ controllers for the brakes control, engine

control, electric power control, controlling of lamps, temperature control, air

conditioning, dash board display panel, cruise control etc.

 CAN, a protocol standard developed by Robert Bosch for automobile electronics, is a

‘serial bus protocol’ for interconnecting the ‘micro-controller based’ devices of a

‘distributed control area network’

 CAN-bus line usually interconnects to a CAN controller between line and host at the

node. It gives the input and gets output between the physical and data link layers at

the host node.

 The CAN controller has a BIU (bus interface unit consisting of buffer and driver),

protocol controller, status-cum control registers, receiver-buffer and message objects.

 These units connect the host node through the host interface circuit

Features of CAN Bus

There is a CAN controller between the CAN line and the host node.

– The CAN protocol based network has only a serial line which is ‘Bi-Directional’.

– A CAN node with a CAN controller can receive or send a bit at any instance by

operating at the max. data transfer rate of 1 Mbps.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :14

– CAN bus has ‘Multi-Master’ & ‘Multicasting’ of messages as its key features.

_Protocol defined start bit followed by six fields of frame bits.

_ Data frame starts after first detecting that dominant state is not present at the CAN line with

logic 1 (R state) to 0 (D state transition) for one serial bit interval

• After start bit, six fields starting from arbitration field and end with seven logic 0s end-field

• 3-bit minimum inter frame gap before next start bit (R→ D transition) occurs

• Differential Signaling in CAN Bus – There are two signal wires CAN_L & CAN_H

(Low & High) are seen - This is called ‘Differential Signaling’ in which the effective

signal on the bus is the difference of voltages in these two wires with respect to ground

⚫ When a common noise signal appears on the two wires, they are subtracted off while

taking the difference between the two bus signal voltages.

⚫ This makes CAN bus more resistant/immune to noise voltages.

CAN Frames – CAN protocol supports four message formats

(i) Data Frame

(ii) Remote Frame

(iii) Error Frame

(iv) Overload Frame

Start-of-Frame (SOF)

– The CAN ‘data frame’ begins with a dominant bit ‘0’ indicating the starting of a frame

Arbitration Field 12 bits : –

- 11-bit identifier(destination address) field & 1 bit the remote transmission request (RTR)

– The identifier & the RTR bit fields are together called as the ‘Arbitration Field’ .

– By programming the ‘Identifier field’, the priority of a message can be fixed.

– Destination device address specified in an11-bit sub-field and whether the data byte being

sent is a data for the device or a request to the device in 1-bit sub-field.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :15

– Maximum 211 devices can connect a CAN controller in case of 11-bit

– CAN Identifies the device to which data is being sent or request is being made.

– When RTR bit is at '1', it means this packet is for the device at destination address. If this

bit is at '0' (dominant state) it means, this packet is a request for the data from the device.

Control Field & Data Field

- The control field consists of six bits that indicates how many bytes of data follow in the

data field .

– The first bit is for the identifier‘s extension.

– The second bit is always '1'.

– The last 4 bits specify code for data Length

– The size of the data field can be zero byte to eight bytes.

Cyclic Redundancy Checksum Field (CRC) – The CRC filed enables the receiver to check if

the received data bit sequence was corrupted or not.

Acknowledgement (ACK) - The two-bit acknowledgement field from receiver is used by the

transmitter to consider it as an acknowledgment of a valid frame from any receiver.

. ACK = '1' and receiver sends back '0' in this slot when the receiver detects an error in the

reception.

• Sender after sensing '0' in the ACK slot, generally retransmits the data frame.

• Second bit 'ACK delimiter' bit. It signals the end of ACK field.

• If the transmitting node does not receive any acknowledgement of data frame within a

Specified time slot, it should retransmit.

End-of-Frame (EOF) - The data message frame is terminated by seven bits as ‘0s’ indicating

the end of a frame

Can protocol works in two cases

CASE 1 : Only One Node Sends Message to the Network

CASE 2 : Many Nodes Send Messages to the Network simultaneously

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :16

Bus arbitration method

• This means that any node is allowed to access the bus at any time, if it is idle. If several

nodes want to communicate at the same moment, the message with the highest priority

wins the bus arbitration and gets the right to transmit.

• The message arbitration (the process in which two or more CAN controllers agree on

who is to use the bus) is of great importance for the really available bandwidth for data

transmission This may result in two or more controllers starting a message (almost) at

the same time.

• CAN data transmissions are distinguished by a unique message identifier (11/29 bit),

which also represents the message priority. A low message ID represents a

high priority. High priority messages will gain bus access within shortest time even

when the bus load is high caused by lower priority messages.

• The arbitration field follows right after the SOF (Start of Frame) bit and it contains of the

message ID and the RTR (Remote Transmission Request) bit.

• Per definition, CAN nodes are not concerned with information about the system

configuration (e.g. node address), hence CAN does not support node IDs. CAN data

transmissions are distinguished by a unique message identifier (11/29 bit), which also

represents the message priority. A low message ID represents a high priority.

• High priority messages will gain bus access within shortest time even when the bus load

is high caused by lower priority messages.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :17

Picture 6.1.2 shows an example where three nodes in a four node CAN network try to access

the bus at virtually the same time. In this example node C will win the bus access within 12

clock times. At a baud rate of 1 MBit/sec this would translate into 12 microseconds. Naturally,

the bus arbitration time varies with baud rate and the message identifier length, 11 or 29 Bit.

I2C (Inter-Integrated Circuit)

This is a ‘ Two-Wire’ protocol developed by Philips for interconnecting Ics. It is a ‘Serial

Bus Protocol’ which is synchronous Serial Bus Communication for networking. It having half-

Duplex communication. It is a ‘Multi-Master Multi-Slave’ protocol. It is also a ‘Byte sized data’

oriented protocol with ‘Acknowledgement’ signals. After each byte received, an

‘Acknowledgement’ is to be sent by the by the receiver-IC to the sender-IC.

I²C Bus communication use of only simplifies the number of connections and provides a

common way (protocol) of connecting different or same type of I/O devices using synchronous

serial communication. The I2C Bus has two signal lines/ wires that carry its signals, they are:

(i) SCL (serial clock):- The signal line/wire for ‘Clock’

(ii) SDA (serial data) :- The line for ‘Bidirectional serial Data’ - Both of these two signal

wires are ‘bi-directional’.

Device Addresses and Master in the I²C bus

• Each device has its own 7-bit ‘Unique Address’ using which the data transfers take place.

• Master IC has processing units that can function as bus controller with bus interface circuits

• The master will usually be a ‘Microcontroller’ that can transmit & receive. These

microcontrollers have ‘I²C hardware’ within the chip and SDA, SCL lines as pins.

• The master can address ‘127 slaves’ at an instance (Multiple Slaves) - Slaves will usually

be ICs like - an external ROM chip from which master can only read , - a LCD module to

which master can only write onto , - an external Flash Memory chip (RAM) to which master

can both read & write.

• Multiple masters can also connect to the I²C bus

• But, at any instance, only one IC can become master & that master IC is the one who

initiates a data transfer on SDA line by transmitting the SCL serial clock pulses

Data Frame of I2C- Synchronous Serial Bus Fields and its length

– First field of 1 bit─ Start bit similar to one in an UART

– Second field of 7 bits─ address field. It defines the slave address, which is being sent the data

frame (of many bytes) by the master

– Third field of 1 control bit─ defines whether a read or write cycle is in progress

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :18

– Fourth field of 1 control bit─ defines whether is the present data is an aacknowledgment

(from slave)

– Fifth field of 8 bits─ I²C device data byte

– Sixth field of 1-bit─ bit NACK (negative acknowledgement) from the receiver. If active then

acknowledgment after a transfer is not needed from the slave, else acknowledgement is

expected from the slave

– Seventh field of 1 bit ─ stop bit like in an UART

Important Properties of I2C protocol

(1) I2C protocol is simple, But I2C is not as fast as SPI protocol

(2) There are 3 standards for I2C bus with the following data transfer speeds:

(i) Slow (under 100 Kbps)

(ii) Fast (400 Kbps)

(iii) High-Speed (3.4 Mbps)

(3) Commonly used I2C devices include EEPROMs, Sensor Modules, Real-Time Clock

(RTC) ICs & similar peripheral chips which can have only one data line & a clock line

(4) Many standard microcontrollers such as PIC, AVR, and ARM etc. have on-chip I2C

hardware module along with SDA & SCL pins

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :19

PARALLEL BUS DEVICE PROTOCOLS

A computer system connects to other sub-systems (such as of I/O devices) at high speed at

very short distances (<25 cm) using a ‘Parallel Bus. A parallel bus has a large no. of lines/ wires

as per a ‘simple parallel bus protocol’

- Eg. of parallel buses are ISA, PCI, ‘AMBA’ bus interface of ARM etc.

The parallel port has the facility to transfer data both in & out between the PC and the outside

world. Parallel port is an inexpensive connector tool for connecting computer devices. The

parallel port is often available in the motherboard of PCs. More no. of parallel ports can be added

to a computer using ISA or PCI parallel port interfacing standards

ISA (Industry Standard Architecture)

ISA Bus Protocol - ISA is a commonly used ‘parallel bus protocol standard’ for IBM

compatible 8086 processor based computer - There are two versions of ISA standards:

(i) 8-Bit ISA (ii) 16-Bit ISA.

ISA is a type of ‘Parallel Bus’ used in PCs for adding ‘Expansion Cards’. The ISA slots in a

motherboard can be used to insert expansion cards to enhance the performance of a computer.

An Expansion card (Expansion Board/ Daughter Card/ Interface Card/ Add-on Card) is an

electronic board that is used to add extra functionality to a computer

Eg. for expansion cards are sound card, video card, graphics card, network card (for LAN),

dial-up modem etc

An ISA bus can connect only to an embedded device that has 80x86 processor. ISA buses are

used for connecting peripheral devices/chips as per the I/O device address range & interrupt

vector addresses designed in IBM PC architecture using 80x86 processor. - Here, the 8086

processor’s addressing modes & the interrupt vector address assignments are taken into account.

ISA bus based IO Port addressing on IBM PC architecture

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :20

PCI (Peripheral Component Interconnect)

A ‘PCI’ device is any piece of computer hardware that plugs directly into a ‘PCI slot’ on

a computer's motherboard. PCI based Network cards, Audio cards etc are available. A PCI

device or card/ board can be inserted into PCI slot of computer motherboard & it is automatically

recognized & configured to work in our system (Plug-&-Play). PCI connects at high speed to

other subsystems having a range of I/O devices at very short distances (<25 cm) using a parallel

bus without having to implement a specific interface for each I/O device.

PCI Bus Protocol for Parallel Data Communication

PCI is an interconnection system between micro-processor & attached devices in which

PCI connection slots are spaced closely for high speed operation. PCI protocol specifies the

interaction between the different components of a computer. The PCI bus operates slow, when it

is connected to low speed devices. But, PCI also provides good advantages for higher speed

devices like audio & video streaming, gaming, high-speed modems etc.

PCI Bus

The PCI is a high performance 32-bit or 64-bit ‘synchronous bus’ used for parallel bus

communication. PCI is implemented with multiplexed address & data bus which allows reduced

pin count in the connectors. A specification version 2.1─synchronous/asynchronous throughput

is up to 132/ 528 MB/s [33M× 4/ 66M× 8 Byte/s], PCI supports devices that works at ‘5 Volts’

or ‘3.3 Volts’. PCI based devices/ cards have plug & play facility on PCI slots i.e PCI driver can

access the hardware automatically and assigns new addresses Thus, simplified addition and

deletion (attachment and detachment) of the system peripherals.

FIFO in PCI device/card:- _ Each device may use a FIFO controller with a FIFO buffer for

maximum throughput.

Identification Numbers :- _ A device identifies its address space by three identification

numbers,

(i) I/O port

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :21

(ii) Memory locations and

(iii) Configuration registers of total 256B with a 4-byte unique ID.

Each PCI device has address space allocation of 256 bytes to access it by the host Computer

PCI device identification

_ A 16-bit register in a PCI device identifies this number to let that device auto- detect it.

_ Another 16-bit register identifies a device ID number. These two numbers let allow the

device to carry out its auto-detection by its host computer.

PCI bridge

_ PCI bus interface switches a process or communication with the memory bus to PCI bus.

_ In most systems, the processor has a single data bus that connects to a switch module

_ Some processors integrate the switch module onto the same integrated circuit as the

processor to reduce the number of chips required to build a system and thus the system cost.

_ Communicates with the memory through a memory bus (a set of address, control and data

buses), a dedicated set of wires that transfer data between these two systems.

_ A separate I/O bus connects the PCI switch to the I/O devices.

PCI-X Bus

‘PCI-X’ is an extension of PCI which supports 64 bit / 100 MHz data transfers Both

‘PCI’ & ‘PCI-X’ buses doesn’t follow the IBM PC architecture- ie. PCI & PIC-X buses are

independent from the IBM PC architecture PCI has a speed of 133 to 533Mbps but PCI-X

having more than 1066Mbps. ie 1 Gbps

PCI –X is Backward compatible with existing PCI cards. It is used in high bandwidth

devices (Fiber Channel, and processors that are part of a cluster and Gigabit Ethernet). It uses

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 2 Page No :22

maximum 264 MBps throughput, uses 8,16 , 32, or 64 bit transfers. 6U cards contain additional

pins for user defined I/Os. It has a live insertion support (Hot-Swap), it supports two independent

buses on the back plane (on different connectors). It also supports Ethernet, Infiniband, and Star

Fabric support (Switched fabric based systems) Compact PCI (cPCI)

Advantages & Benefits of PCI

(i) Very High Speed . -The clock speed (MHz) of a PCI bus works independently of the CPU

speed.

(ii) ‘Plug-&-Play’ Facility of PCI cards - PCI is auto-configurable & is fully controlled by

software and not by jumpers or hardware switches on a board - This is a feature referred to as

"Plug-&-Play"

(iii) Platform-Independent - Both PCI & PCI-X works independent of the CPU - Unlike the

ISA, both are ‘platform-independent’(where ISA depends on the IBM PC architecture

platform)

(iv) 3.3 Volts Operation - Unlike ISA, a PCI bus can operate at 3.3V which is important for

the battery life on portable devices

(v) More Throughput.

(vi) Dominant & Reliable parallel bus standard - PCI bus requires less components, pins &

boards, so there is a higher reliability for board-level buses

Features of PCI bus & PCI protocol

(1) Synchronous bus architecture.

(2) 64-Bit Addressing .

(3) Linear Burst Mode Data Transfer .

(4) Large Bandwidth.

(5) The PCI driver software can automatically access the hardware.

MODULE 3

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 3 Page No :1

Subject: EC 308 EMBEDDED SYSTEMS

Module 3

MEMORY DEVICES

Memory is the storage device in a system used to store data and instructions. Memory

chips do not typically have separate READ & WRITE pins. A read/ write signal pin (R/W)

controls the direction of data transfer. Most memories include an ‘ENABLE signal pin’ that

controls the tri-stating of data onto the memory’s pins. The enable pin can be used to easily build

large memories from multiple memory banks.

CHARACTERISTICS OF MEMORY

1. Memory Capacity – The basic characteristic of a memory is its ‘Capacity’ or ‘Size’ (in

Kilo/Mega/Giga bits).But, several versions will be available for a memory of a same size, each

with a different data width.

For e g, a 256 MB memory may be available in two versions.

i. (64Mega) X (4-bit) Array.

ii. (32 Mega) X (8-bit) Array

2. Aspect Ratio - Internally, the data are stored as a two-dimensional array of cells in a memory

chip. The ‘Height/ Width’ ratio of a memory is known as its aspect ratio. The best aspect ratio

depends on the amount of memory required.

The array of memory is in two dimensional, the ‘n-bit address’ received by the memory

chip is split into a ‘Row Address (r)’ & a ‘Column Address (c)’ with ‘n’ = ‘r’ + ‘ c’ . The row &

column select a particular memory cell.

Most systems consist of two types of memory, Read-only Memory (ROM) and Random-Access

Memory (RAM).

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 3 Page No :2

ROM :-This type of memory is non-volatile. ROM image holds the programs, operating system,

and data required by the system. Following are the various types of ROM:

1. MROM (Masked ROM)

The very first ROMs were hard-wired devices that contained a pre programmed set of

data or instructions. These kind of ROMs are known as masked ROMs. Ø MROM programming

is performed during IC fabrication. It is inexpensive ROM. It is used for large scale

manufacturing

Uses: 1. A finalized ROM image of system program.

2. Data, pictograms, image pixels, pixels for the fonts of a language.

2. PROM (One Time Programmable ROM –OTP ROM)

PROM is read-only memory that can be modified only once by a user. The user buys a

blank PROM and enters the desired contents using a PROM programmer. A PROM once written

is not erasable.

Uses: 1. Smart card identity number and personal information.

2. Storing boot programs.

3. ATM card or credit card or identity card.

3. EPROM (Erasable and Programmable ROM)

Used in place of masked ROM during development phase. UV Erasable and Electrically

programmable by a device programmer

4. EPROM (Erasable and Programmable ROM)

The EEPROM is programmed and erased electrically. It can be erased and reprogrammed

about ten thousand times. In EEPROM, any location can be selectively erased and programmed.

EEPROMs can be erased one byte at a time, rather than erasing the entire chip. Hence, the

process of re programming is flexible but slow.

Uses: 1. Storing current date and time in a machine.

2. Storing port status.

3. Storing driving, malfunctions and failure history in an automobile.

5. Flash Memory

Flash memory is a form of EEPROM in which a sector of bytes can be erased in a flash

(very short duration corresponding to a single clock cycle)

Uses: 1. Storing pictures in digital camera.

2. Storing SMS, MMS messages in a mobile phone.

3. Storing voice compressed form in a voice recorder.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 3 Page No :3

6. FACTORY-PROGRAMMED ROM - Factory-programmed ROMs are ‘already data

written’ memories that user can’t alter. They ordered from the manufacturing factory with

particular data written onto it as per the customer’s request.

7. FIELD-PROGRAMMABLE ROM - Field-programmable ROMs can be programmed by the

user using a special hardware set-up for writing & erasing the ROM . ‘Flash memory’ is a field-

programmable ROM which is ‘electrically erasable’. Flash memory uses standard system voltage

for erasing & programming which allows it to be erased & re-programmed using a computer

system. Early flash memories had to be erased in their entirety but modern flash devices allow

memory to be erased in block.

RAM

RAM is used to hold the programs, operating system, and data required by a computer

system. In embedded systems, it holds the stack and temporary variables of the programs,

operating system, and data. RAM is generally volatile, (does not retain the data stored in it when

the system 's power is turned off). It is used for saving the variables, stacks, process control

blocks, input buffer, output buffer, decompressed format of program and data at the ROM image.

Following are the various types of RAM:

1. EDO (Extended Data Out) RAM

EDO RAM is used in systems with clock rates up to 100 MHz. Zero wait state is needed

between two fetches. Single cycle read or write is possible.

2. SDRAM (Synchronous DRAM)

SDRAM Synchronizes the read operation and keeps next word ready while previous one

is being fetched; SDRAM is used in systems with clock rates up to 1 GHz.

3. Double-Data Rate SDRAMs (DDRs) –

Faster synchronous DRAMs known as ‘Double-Data Rate Synchronous DRAMs’ (DDR

SDRAMs) or simply DDRs. DDRs use sophisticated clocking circuit techniques to perform more

memory access operations per clock cycle (Typically ‘Two memory access’/ single Cycle by

using both rising & falling edges of clock) .

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 3 Page No :4

4. RDRAM (Rambus* DRAM)

RDRAM accesses in bursts of four successive words in single fetch; used for 1 GHz +

performance of the system

5. Parameterised Distributed RAM

Parameterized Distributed RAM is the RAM distributes in various system subunits. I/O

units and transceiver sub units can have a slice of RAM each.

MMU & MEMORY MAPPING

A Memory Management Unit (MMU) translates addresses between the CPU & the

‘Physical Memory’ (or physically present main memory area/’addresses’). This ‘Address

Translation Process’ is known as ‘Memory Mapping’. Here, the logical addresses are mapped

from a logical space into a physical space. Memory Management Units (MMUs) appear as a part

of the processor. MMUs allow the system software(OS) to run & manage multiple programs in a

single physical memory, in which different programs resides at different address spaces.

Memory Map

A memory map is a massive table, in effect a database that comprises complete

information about how the memory is structured in a computer system. Map to show the program

and data allocation of the addresses to ROM, RAM, EEPROM or Flash in the system. It reflects

the addresses available to the memory blocks and IO devises. It also reflects a description of

memory and IO devices in the system hardware. It reflects memory allocation for the programs,

data and IO operations by a locator program.

Virtual Memory System

MMUs are used to provide ‘Virtual Addressing’ shown in fig

Logical Address - The MMU accepts logical addresses from the CPU. Logical addresses (or

Virtual Addresses) refer to the abstract address generated by the CPU. But do not correspond to

actually present physical address locations of main memory. MMU translates logical addresses

to physical addresses that correspond to actual RAM locations with the help of MMU tables. By

changing the MMU’s tables, we can even change the physical location at which the program

resides.

Page Fault - In a virtual memory system, the MMU keeps track of which of the logical

addresses are actually resident (or present) in main memory .

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 3 Page No :5

 Those logical addresses that do not reside (or present) in main memory are kept on the

secondary storage device (such as disk or flash memory devices).

 When the CPU requests an address that is not in main memory, the MMU generates an

‘Exception’ called as a ‘Page Fault’(An ‘Exception’ is referred to as a software interrupt

that detects an error condition) .

 Then an ‘Exception Handling Program code’ (similar to an ISR) is executed to read the

requested location from the secondary storage device into main memory.

 After the required memory has been read from main memory & the MMU’s tables have

been updated to reflect the changes

MEMORY MAPPING THROGH ADDRESS TRANSLATION

Virtual memory is implemented either through ‘Paging’ or ‘Segmented’ schemes.

Memory Segments – memory segments are ‘Large & Arbitrarily Sized Regions of Memory’. A

segment is usually described by its starting address & size. Segmentation

scheme allows different segments to be of different sizes.

• Pages - Pages describe ‘Small & Equally Sized Memory Regions’.

Pages are of same size & this feature simplifies the hardware

required for address translation.

• A segmented, paged scheme is created by dividing each segment into

pages & using two steps for address translation.

Address Translation Schemes - There are two styles of address translation:

(i) Segmentation

(ii) Paging - The two schemes can be combined to form a Segmented, Paged addressing scheme.

Address Translation for ‘Segmented Addresses’ –

Here, the MMU maintains a ‘Segment Base Register’ that contains the base address (or

points to the starting) of the currently active/ used memory segment. The logical address from

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 3 Page No :6

CPU is used only as an ‘Offset’ for this segment base. The ‘Physical Address’ is formed by

adding the ‘Segment Base’ to the ‘Offset’. (Physical Address = Segment Base Address +

Offset). Segmentation schemes also check the physical address generated with the upper & lower

address limit of the current segment with the help of its segment size & the offset (ie. The

allowed ‘address range’ for the current segment is checked with the physical address generated).

Address Translation for ‘Paged Addresses’

The translation of paged addresses is a simpler calculation; but requires more MMU state

As shown in fig, the logical address is divided into two sections: a ‘Page Number’ &

an ‘Offset’. CPU maintains table that stores the starting addresses of all pages present in the

physical memory. The page table is normally kept in main memory. Here, the ‘Top bits of

logical address’ represents a pointer to the ‘Page Table’. The ‘Bottom Bits’ of logical address is

the ‘Offset’ within that page. The MMU concatenates the ‘Page Starting Address’ from the

page table with the ‘Offset’ to form the Physical Address. All pages have uniform size with

proper page boundaries. Pages are small, typically between 512 bytes & 4 KB, so the page table

is large for CPUs with a large physical memory area/ address.

TRANSLATION LOOKASIDE BUFFER (TLB)

The efficiency of paged address translation can be increased by caching page translation

information. A ‘Cache memory’ for storing ‘Address Translation information’ is known as a

‘Translation Lookaside Buffer’ (Also called as TLB cache). The MMU reads the TLB to check

whether a page no. is currently in the TLB cache. If so, the MMU uses that value rather than

reading from memory MMU of ARM Architecture. A MMU is an optional part of the ARM

architecture & the ARM MMU supports virtual address translation.

The ARM MMU supports the following types of memory regions for address translation:

(i) a ‘Section’ is a 1-MB block of memory

(ii) (ii) a ‘Large Page’ is 64 KB

(iii) (iii) a ‘Small Page’ is 4 KB.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :7

DIRECT MEMORY ACCESS (DMA)

Direct memory access (DMA) is a bus operation that allows read and write between IO

devices and memory not controlled by the CPU. A DMA transfer is controlled by a DMA

controller, which requests control of the bus from the CPU. After gaining control, the DMA

controller performs read and write operations directly between devices and memory. Figure

shows the configuration of a bus with a DMA controller.

The DMA requires the CPU to provide two additional bus signals. The bus request is an

input to the CPU through which DMA controllers ask for ownership of the bus. The bus grant

signals that the bus has been granted to the DMA controller. The ‘Bus Grant’ is asserted by the

CPU when the system bus is ready. The DMA controller uses the above two handshaking signals

to gain control of the bus using the normal four-cycle handshake signaling scheme for system

bus operation. The CPU will finish all pending bus operations before granting control of the bus

to the DMA controller & thus DMA controller becomes ‘Bus Master’. When CPU grants control,

it stops generating (or driving) the other bus control signals such as R/W signals, Address signal

etc.

DMA CONTROLLER AS BUS MASTER - Upon becoming bus master, the DMA controller

has control of all bus signals such as ‘R/W’, ‘Address’ etc. If the DMA controller is bus master,

it can perform read & write operations using the same bus protocol used for CPU based bus

operations. After a data transfer is finished, the DMA controller returns the bus to the CPU by

de-asserting (or by removing) it’s ‘Bus Request’ signal towards the CPU. This will make the

CPU to de-assert (or remove) the ‘Bus Grant’ signal issued earlier.

DMA REGISTERS - The CPU controls DMA operations through special control registers in

the DMA controller. A typical DMA controller includes the following three control registers

(i) Starting Address Register : Specifies from where the transfer is to begin .

(ii) Length Register : Specifies the no. of words to be transferred.

(iii) Status Register : Allows the DMA controller to be operated by the CPU.

The CPU initiates a DMA based transfer by configuring the ‘Starting Address’ register

 & ‘Length register’ appropriately. Then CPU set a ‘Start Bit’ in the ‘Status Register’ to start

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :8

DMA transfer. During a DMA transfer CPU can’t use the bus & can’t do bus operations. If

CPU needs the bus during a DMA operation, it waits until the DMA controller returns bus

master-ship (or bus-ownership) to the CPU. But, if the CPU has instructions & data in the cache

or in CPU registers, CPU can do some other useful work for some time using the data in cache/

CPU registers. After the DMA operation is complete, the DMA controller interrupts the CPU to

inform that the DMA based data transfer is completed - To prevent the CPU from waiting for

too long. Most DMA controllers implement ‘Data Block’ based data transfer that occupy the

bus for only a few cycles at a time ie. the DMA transfer will be done only for a block of data at

a time. After each block, DMA controller returns bus control to the CPU & then DMA

controller goes to sleep for some time, after which it requests the bus again for the next block

transfer.

I/O Devices

Many I/O devices are used in embedded computing systems such as

(i) Timers & Counters

(ii) ‘Analog-to-Digital’ & ‘Digital-to-Analog’ Converters

(iii) Keyboards

(iv) Light-Emitting Diodes

(v) Displays

(vi) Touch screens.

Some of the above devices are available as on-chip devices in the micro-controllers; others are

implemented separately.

(i) TIMERS & COUNTERS - ‘Timers’ & ‘Counters’ use same logic circuit for their operation,

but they differ from each other by their use. Timers/ Counters have registers to hold the ‘Current

Count Value’ & an ‘Increment Input’ (or Update) signal to increment the current register value

by one.

Difference between Timer & Counter

✓ In ‘Timers’, the counting operation is done based on a ‘Periodic Clock Signal’.

✓ For a ‘Counter’, it’s clock input connected to an ‘Aperiodic Signal’ for counting the no. of

occurrences of an external event.

✓ Since, both of them use the same logic, the device is often called a ‘Counter/ Timer’ - Fig.

shows the internal logic circuits of a counter/timer.

 A ‘counter/ timer’ uses a ‘Array of Half-Subtractors’ to decrement the count when the count
‘Update’ signal is asserted.

 A ‘counter/ timer’ has an ‘n-bit register’ called the ‘Count Register’ to store the current state/

value of counting.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :9

 A combinational logic circuit block (shown

as ‘= 0’ block) checks whether the count

becomes zero (Count = 0) - The ‘Done’ is

an output signal to indicate the ‘Zero

Count’.

 The ‘Starting Count’ value of the

counter/timer can be provided through the

‘Reset Register’ though which the ‘initial

count state’ of the ‘Count Register’ is

loaded.

 The reset register can be loaded with

required starting values by using some

other circuits of the counter/timer

peripheral of a micro-controller.

Cyclic & Acyclic Modes of Operation of Counter/ Timer

Most counters provide both ‘Cyclic’ & ‘Acyclic’ modes of operation. The cyclic mode is

also called as ‘Auto-Reload’ mode ie. once the counter reaches the ‘Done’ state (or completed its

counting), it is automatically re-loaded with the initial count state to continue the counting

process. In acyclic mode, the counter/timer waits for an explicit starting signal from the

microprocessor to resume its counting.

Watchdog timer - A watchdog timer is an I/O

device that is used for the internal operation of a

computer system. As shown in fig, the watchdog

timer output line is connected to the hardware

‘Reset’ pin/ line of the processor/CPU through

the system bus. The CPU’s software is

programmed to reset the watchdog timer circuit,

just before the count value of the watchdog timer reaches its ‘maximum counting limit’. If the

count reached the maximum counting limit without being reset by the CPU’s software program

assumes that either a software/ hardware problem has caused the CPU to get stuck (or halt)

without resetting watchdog timer before it reached the maximum count limit. In this situation,

the processor will get reset due to the watch dog timer’s connection to reset pin/ line of the CPU.

Here, it is assumed that either a software or hardware problem has caused the CPU to get stuck

(or halt) without resetting its. Using a watch dog timer, the system is made to quickly reset to

make it operational again.

A/D & D/A CONVERTERS

It is also known as ADCs & DACs that are used to interface ‘Non-Digital Devices’ to

embedded systems. Since the analog-to-digital conversion requires complex circuitry, it requires

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :10

more complex interface circuitry to the microprocessor. A/D conversion requires ‘Sampling’ of

analog input signal to convert it to digital form. Using a control signal, the ADC takes a sample

of analog signal & digitizes it.

There are several types of A/D converter circuits. Some of ADC circuits take a constant

amount of conversion time for any sampled analog input signal value.

Variable-time A/D converters should provide a ‘Done’ signal to indicate the

microprocessor that the digitally converted data value is ready to be read. An A/D interface has

‘Analog Input’ pins/ lines & two ‘Digital Input’ pins. The digital input lines are

(i) A data port in ADC that allows the converted data to be read by a micro-processor.

(ii) A ‘clock’ input of ADC that tells when to start the next conversion.

In D/A converters, the digital input data is continuously converted to its analog value.

The D/A conversion process & the related circuits are relatively simple. So the D/A converter

interface is not a complex interface

KEYBOARDS

A keyboard is basically an array of

switches, but it may include some internal

logic to help simplify the interface to the

microprocessor. A switch uses a mechanical

contact to make or break an electrical circuit.

An encoded keyboard uses some code to

represent which switch is currently being

depressed. At the heart of the encoded

keyboard is the scanned array of switches

shown in Figure.

The scanned keyboard array reads only one row of switches at a time. The de-multiplexer

at the left side of the array selects the row to be read. When the scan input is 1, that value is

transmitted to one terminal of each key in the row. If the switch is depressed, the 1 is sensed at

that switch’s column. Since only one switch in the column is activated, that value uniquely

identifies a key. The row address and column output can be used for encoding, or circuitry can

be used to give a different encoding.

Key Bounce:-One major problem with mechanical

switches is that they ‘Bounce’ when they are being

pressed (as shown in fig). When the switch is pressed

by pushing the button, the force of the press causes

the contacts inside the switch to bounce several times

until it get settled down .This is called ‘Bouncing’

problem’ of a switch. If bouncing problem is not

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :11

corrected, it will appear that the switch has been pressed several times, thereby giving false

inputs. A hardware circuit can be built using a ‘timer’ for removing the bouncing problem.

Bouncing problem can be removed using software program coding also.

LEDs (Light Emitting Diodes)

LED is often used as a display for simple indication such as a ‘power on status’ Fig.

shows how to connect an LED to a digital

output. A current- limiting resistor is connected

between the digital output pin & the LED. The

presence of this resistor will create the voltage

drop between the digital output voltage & the

LED’s on voltage of 0.7 volts (similar a

forward biased junction). When the digital

output goes to ‘0’(LOW), the effective voltage

across LED is in its off region (similar to a reverse biased diode) which causes the LED is not to

turn on.

DISPLAYS

A display device may be either

directly driven or driven from a frame

buffer. Typically, displays with a small

number of elements are driven directly

by logic, while large displays use a

RAM frame buffer. The n-digit array,

shown in Figure is a simple example of

a display that is usually directly driven.

Arrays of LEDs’ can be used to make

more complex displays. The n-digit array.

A ‘Single-Digit Display’ typically consists of ‘Seven Segments’. Each segment may be

either an LED or an LCD element. The digit input (as shown in fig.) is used to choose which

digit position that is currently going to displayed. A ‘digit’ is displayed on the segment by

selectively activating the LED or LCD elements of that segment based on the decoded data input

value. The display’s driver circuit is responsible for repeatedly scanning through the digits &

presenting the current value of each to the display.

Frame Buffer - Displays with a small no. of elements can be driven directly by a decoder logic

circuit. But large displays use a ‘buffer memory’ for storing consecutive ‘display frames’. A

‘Frame Buffer’ is a simple & dedicated RAM that is attached to the system bus. The processor

writes data into the frame buffer in the desired order of displaying i.e. The pixels in the frame

buffer are written to the display in the standard order of sequentially reading the pixels .

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :12

LCDs (Liquid Crystal Displays)

Each pixel in the LCD display is formed by a single ‘Liquid Crystal’. Large displays are

built using ‘array of liquid crystal pixels’. Interfacing an LCD displays to the computer system is

very difficult because the array liquid crystal pixels cannot be randomly accessed. Old LCD

panels were called a ‘Passive Matrix’ displays because they use a two dimensional grid of wires

to access the pixels of an array. Modern LCD panels use an ‘Active Matrix’ system that puts a

transistor at each pixel to control access to the pixels. Active matrix LCD displays provide a

higher-quality display with a higher contrast

TOUCHSCREENS

A touch screen is an ‘input

device overlaid on an output

device’. The touch screen

monitors & accounts the position

of a touch to its surface. Since the

touch screen input is overlaid on a

display, the user can react to

information shown on the touch

screen display.

The two types of touch screens

are:

(i) Resistive Type (ii) Capacitive Type

A resistive touch screen uses a two-dimensional voltmeter to sense touch position. The

resistive touch screen consists of two conductive sheets separated by ‘spacer balls’. The top

conductive sheet is flexible so that it can be pressed to touch the bottom sheet. A constant

voltage is always applied across the length of the conducting sheet. The resistance across the

length of the conducting sheet causes a ‘voltage gradient’ to appear across the length of the sheet

(as shown in fig). A touch on the top sheet makes a contact between top & bottom sheets. The

value of voltage gradient on the conductive sheet after a touch can be sampled though a ‘Contact

Point’ is provided on the top sheet. An analog-to-digital converter is used to digitalize this

sampled voltage. The position of the ‘touch’ can be sensed by measuring the results of the ADC.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :13

INTERRUPTS

The ‘Interrupt Mechanism’ allows devices to signal (or interrupt) the CPU & to force the

CPU to execute a particular piece of code. When an interrupt occurs, the ‘Program Counter’

value is changed to point to an ‘Interrupt Handler Routine’ ((or an interrupt service routine, ISR)

that takes care of the interrupting device. The interrupt mechanism saves the value of the PC at

the instant of interruption so that the CPU can return to the program that was interrupted earlier.

Interrupts allows the control flow in the CPU to change easily between different ‘contexts’.

Interrupt Request : The device asserts the ‘Interrupt Request Signal’ when it wants service

from the CPU . The logic circuitry in the device will decides when to interrupt the CPU by

generating an interrupt request signal.

Interrupt Acknowledgement : The CPU asserts ‘Interrupt Acknowledge Signal’ when it is

ready to handle the request from an interrupting device.

The CPU change the ‘Program Counter (PC)’ to point to the appropriate ‘Interrupt Handler

Program’

INTERRUPT SERVICE ROUTINE (ISR) (Interrupt Handler Program -)

ISR is a small program that the processor executes when the corresponding Interrupt is

being requested. For every interrupt, there must be an interrupt service routine (ISR), When an

interrupt occurs, the processor/microcontroller runs the interrupt service routine.

When an interrupt occurs

– Processor masks further external interrupts.

– Save the current context on stack

– Then executes the appropriate interrupt service routine (ISR).

– Upon return from the ISR restores the context and enables interrupts and return.

Interrupt handling mechanism

Steps in the ‘Interrupt Handling Process

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :14

Step-1 (CPU): - The CPU checks for any pending interrupt requests just before the beginning of

execution of every instruction in a program . If any interrupt requests are found in the ‘Interrupt

Request Register’, CPU responds to the highest-priority interrupt (ie. The interrupt that has

higher priority in the ‘Interrupt Priority Register’)

Step-2 (Device): - The device receives the acknowledgment signal from CPU . The device sends

its interrupt ‘vector number’ to the CPU.

Step-3 (CPU): - The CPU looks up the interrupting device’s ‘Interrupt Handler Program

Address’ in the ‘Interrupt Vector Table’ using the vector no. as the pointer to the vector table . A

‘sub-routine’ like mechanism is used to save the current value of the Program Counter . The

internal CPU state, such as the contents of general-purpose registers are also stored.

Step-4 (Software): -The device driver software program will save additional CPU states (or ISR

program) . The device driver program performs the required operations on the interrupting

device. The device driver also executes the ‘Return from Interrupt’ instruction.

Step-5 (CPU): - The ‘Return from Interrupt’ instruction re-stores the contents of the Program

Counter & the other automatically saved CPU states to return execution to the program code that

was interrupted earlier.

Multiple Interrupts: (Non Nested ISR and Nested ISR)

In a system with multiple interrupts, each and every interrupt may be assigned a

priority level. Here there is a possibility to occur multiple interrupts at a time. There are two

types of interrupt service mechanisms for the case of multiple interrupts. Non Nested ISR and

Nested ISR

Non Nested ISR:

In this case, Processors don't permit in-between routine diversion to higher priority

interrupts. These processors provide auto disabling of all mask-able interrupt when ISR

execution starts and auto re-enabling of all mask-able interrupt on return from ISR. These

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :15

processors may also provide for auto saving the CPU registers (context) when ISR execution

starts and auto return of saved values into the CPU registers on return from ISR. This help in fast

transfer to pending higher priority interrupt.

Figure (a) shows multiple interrupts with diversion to higher priority interrupts only at

the end of present ISR. Whenever an interrupt occurs the processor diverts the execution to the

corresponding ISR (at time t₀). During the execution of this first ISR, suppose another interrupt

with higher priority occurs (at time t₁)but the processor will continue the first ISR and finished it

(at time t₂) then only execution will bediverted to the second ISR (at time t₂+t’).

Nested ISR:

In this case, processors permit in-between routine diversion to higher priority interrupts.

Figure (b) shows multiple interrupts with diversion to higher priority interrupts in between ISR.

Whenever an interrupt occurs the processor diverts the execution to the corresponding

ISR (at time t₀). During the execution of this first ISR, suppose another interrupt with higher

priority occurs (at time t₁) then the processor will stop the first ISR (pending) and execution will

be diverted to the second ISR (at time t₁+t’). After completion of second ISR (at time t₂) the

pending ISR will be resumed at time t₂+t’. After finishing this first ISR, the execution will be

returned to the main program.

These processors may also provide for auto saving the CPU registers (context) when ISR

execution starts and auto return of saved values into the CPU registers on return from ISR. This

help in fast transfer to higher priority interrupt

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :16

Context:- Whenever an interrupt occurs, processor stops the currently doing program and saves

some values including program counter, stack pointer, status register, CPU registers etc before

diverting the execution to the corresponding ISR. The saved data during the ISR call is known

as context.

Interrupt Priorities & Interrupt Vectors

Computer systems usually have more than one device, so there must be some mechanism

for allowing multiple devices to interrupt the CPU. There are two ways in which interrupt

mechanism can be made to handle multiple devices & to provide flexibility in assigning the

locations of ISRs . The two mechanisms are ‘Priorities’ & ‘Vectors’ .‘Priorities’ determine

which device is serviced first . ‘Vectors’ determine what ‘routine program’ is used to service the

interrupt.

INTERRUPT PRIORITIES

‘Prioritized interrupts’ mechanism allow the CPU to recognize some interrupts as more

important that others ie. Prioritized interrupts allow multiple devices to interrupt the CPU

simultaneously. Prioritized interrupts also allow the CPU to ignore less important interrupt

requests to handle more important requests . Prioritized device interrupts are shown in fig.

The CPU provides several different interrupt request signals shown in fig. as ‘L1’, ‘L2’

… up to ‘Ln’'. Typically, the ‘Lower-Numbered’ interrupt request lines are given ‘Higher

Priority’. If the devices ‘1’, ‘2’ & ‘n’ all requested interrupts simultaneously, Device-1’s request

would be acknowledged because it is connected to the ‘highest priority’ interrupt line . Rather

than providing a separate interrupt acknowledge line for each device, most CPUs use a set of

acknowledgment signal lines (similar to a bus) that carry the winning interrupt’s priority no. of in

its binary form.

So a prioritized interrupt system with eight no. of devices requires a total of just 3

interrupt acknowledgment signal lines rather than 8 separate acknowledgment lines. The device

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :17

can recognize that its interrupt request was accepted by seeing its own priority no. on the

interrupt acknowledge signal lines (bus).

Most CPUs provide a relatively small no. of interrupt priority levels (up to eight levels) -

More priority levels can be added using an external ‘Interrupt Controller’ module/ IC.

The interrupt priority of a device can be changed by simply connecting the device to a

different interrupt request line with higher priority. Since such a connection change requires

hardware modification, some other mechanism should be provided to make the system easily

change interrupt priorities

Masking of interrupts

The interrupt priority mechanism must ensure that a ‘Lower-Priority Interrupt’ does not

occur when a ‘Higher-Priority Interrupt’ is being handled . This process is known as ‘Masking

the Interrupts’. When an interrupt is acknowledged, the priority level of that interrupt is stored

in an internal register by the CPU. When a next subsequent interrupt is received, its priority is

checked against the priority register. The new interrupt request is acknowledged only if it has

higher priority than the currently pending interrupt.

When the execution of the interrupt handler program is completed, the priority register

must be reset. To ensure the resetting of the priority register, in most of the CPU architectures a

specialized instruction will be available to return from interrupts Non-Maskable interrupt

(NMI).

The highest-priority interrupt is normally called the ‘Non-Maskable Interrupt’. The NMI

interrupts cannot be ‘masked’ or ‘turned-off’. NMI is usually reserved for interrupts caused by

power failures (To handle a low power situation, a simple circuit can be used to detect a low

power supply & the NMI interrupt handler program can be used to save critical variables/ states,

turn-off I/O devices etc.)

INTERRUPT VECTORS

Interrupt vector mechanism allow the interrupting device to specify its handler program -

Vectors provide flexibility to change the interrupt handler program that should service an

interrupt request from a device - Fig. shows the hardware structure required to support interrupt

vectors. Working of Interrupt Vector Mechanism - Here, extra signal lines known as the

‘interrupt vector lines’ run from the device’s side towards the CPU along with the ‘interrupt

request & acknowledgement’ signal lines .

The CPU maintains a table called ‘interrupt Vector Table’ stored in the memory (as

shown in the fig.). The ‘Interrupt Vector Table’ contains the starting address of different

interrupt handler programs. After receiving an interrupt acknowledgement signal, the

interrupting device will send its ‘Interrupt Vector Number’ through the vector lines towards the

CPU. The CPU uses this vector no. as an index (or pointer) towards ‘Interrupt Vector Table’ to

find the address of the interrupt handler program requested by the device.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :18

Types of Interrupts

There are two types of interrupts: hardware interrupts and software interrupts.

1. Hardware Interrupt Sources:

Hardware sources can be internal or external for interrupt of ongoing routine and thereby

diversion to corresponding ISR.

• The internal sources from devices differ in different processor or microcontroller or

device and their versions and families

• External sources and ports also differ in different processors or microcontrollers

There are four possible sources of hardware interrupts as follows

a) Internal Hardware Device Sources

The Internal Hardware Device Sources are

1 Parallel Port

2. UART Serial Receiver Port - [Noise, Overrun, Frame-Error, IDLE, RDRF in 68HC11]

3. Synchronous Receiver byte Completion

4. UART Serial Transmit Port-Transmission Complete, [For example, TDRE (transmitter data

register Empty]

5. Synchronous Transmission of byte completed

6. ADC Start of Conversion

7. ADC End of Conversion

8. Pulse-Accumulator overflow

9. Real Time Clock time-outs

10. Watchdog Timer Reset

11. Timer Overflow on time-out

12. Timer comparison with Output compare Registers

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :19

13. Timer capture on inputs

b) External Hardware interrupts with also sending vector address

- INTR in 8086 and 80x86 ─ The device provides the ISR Address or Vector Address or

Type externally on data bus after interrupt at INTR pin

c) External Hardware Interrupts with Internal Vector Address Generation

Non-Maskable Pin─ NMI in 8086 and 80x86. Mask-able Pins (interrupt request pin)

─INT0 and INT 1 in 8051, IRQ in 68HC11.

d) Sources of interrupts due to Processor Hardware detecting Software error

Software sources for interrupt are related to processor detecting computational error

during execution such as division by 0, illegal opcode or overflow (for example, multiplication

of two numbers exceeding the limit)

1. Division by zero detection (or trap) by hardware

2. Over-flow detection by hardware

3. Under-flow detection by hardware

4. Illegal opcode detection by hardware

2. Software Interrupts(Exceptions & Traps)

- Software interrupts are triggered internally by some program instruction within the currently

executing software by the master processor .

They are initiated by an event that is a result of a problem with the current instruction stream .

Basically , software interrupts are also referred to as ‘Exceptions’ or ‘Traps’.

• Exceptions - Exceptions are internally generated software interrupts triggered by errors

that are detected by the master processor during software execution such as illegal math

operations like a ‘Divide-by-Zero’ condition ,‘Invalid Op-codes’(Fetch & Decode of

invalid instructions), Overflow after an arithmetic operation etc.

• Traps - Traps are software interrupts specifically generated via a assembly language

instruction known as the ‘interrupt instruction’ of the master processor

• Eg.‘SWI’ instruction in 8085, ‘INTn’ instruction of 8086.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :20

DEVICE DRIVERS

Most embedded hardware requires some type of software initialization and management.

A device driver is a function used by a high-level language programmer, which does the

interaction with the device hardware, sends control commands to the device, communicates data

to the device and runs the codes for reading device data.

Device drivers are the software libraries that initialize the hardware, and manage access

to the hardware by higher layers of software. Device drivers are the ‘Communication Facilitator’

program between the Hardware & the Operating System & Application Layers.

TYPES OF DEVICE DRIVERS –

Device drivers are typically considered either

(i) Architecture-Specific Device Drivers - A device driver that is architecture-specific manages

the hardware that is integrated into the master processor’s architecture (On-chip hardware

modules). Device drivers that initialize & enable components within a master processor such as

‘On-chip Memory’, on-chip memory managers (MMU) & different hardware modules such as

Interrupt Controller etc.

(ii) Generic Device Drivers - A device driver that is generic manages hardware that is located on

the board & not integrated onto the master processor’s on-chip architecture. The generic driver

manages hardware units on an embedded board that is not specific to a particular processor

It can be configured to run on a variety of architectures that contain the related board hardware

for which the driver is written. It include code that initializes & manages access to the major

components of the embedded board, including board buses (I2C, PCI controller Modules/ ICs

etc), ‘Off-chip Memory’ .

FUNCTIONALITIES OF DEVICE DRIVERS –

Regardless of the type of device driver or the hardware it manages, all device drivers are

generally made up of some around ten basic functions. Each of the driver functions requires

program code that interfaces directly to the hardware & to higher layers of software . Device

driver code typically runs in supervisory mode (Software running in supervisory mode having

more access privileges than software running in user mode).

The ten basic functions of device drivers are

(1) Hardware Startup : Initialization of the hardware upon power-on or reset

(2) Hardware Shutdown :Configuring hardware into its power-off state.

(3) Hardware Disable :Allowing other software programs to disable hardware.

(4) Hardware Enable :Allowing other software programs to enable hardware.

(5) Hardware Acquire : Allowing other software programs to gain access to hardware.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :21

(6) Hardware Release : Allowing other software programs to free (unlock) hardware.

(7) Hardware Read : Allowing other software programs to read data from hardware.

(8) Hardware Write : Allowing other software programs to write data to hardware.

(9) Hardware Install : Allowing other software programs to install new hardware.

(10) Hardware Uninstall : Allowing other software programs to remove installed hardware.

1. Device Drivers for Interrupt-Handling

The software that handles interrupts on the master processor and manages interrupt

hardware mechanisms (i.e., the interrupt controller) consists of the device drivers for interrupt-

handling. These functions implemented in software usually depend on the following criteria

 The types, number, and priority levels of interrupts available (determined by the interrupt

hardware mechanisms on-chip and on-board).

 How interrupts are triggered.

 The interrupt policies of components within the system that trigger interrupts, and the

services provided by the master CPU processing the interrupts.

Following are some of the device drivers for handling interrupt.

Interrupt-Handling Start up: This driver is used for initialization of the interrupt hardware

(i.e., interrupt controller, activating interrupts, etc.) upon power-on or reset.

Interrupt-Handling Shutdown:- This driver is used for configuring interrupt hardware (i.e.,

interrupt controller, deactivating interrupts, etc.) into its power-off state.

Interrupt-Handling Disable:- This driver is used for allowing other software to disable active

interrupts on the fly (not allowed for Non-Maskable Interrupts (NMIs), which are interrupts that

cannot be disabled).

Interrupt-Handling Enable:- This driver is used for allowing other software to enable inactive

interrupts on-the fly.

Interrupt-Handler Servicing:- This driver is used for the interrupt-handling code itself, which

is executed after the interruption of the main execution stream (this can range in complexity from

a simple non-nested routine to nested and/or re entrant routines).

2. Memory Device Drivers

The software must provide the processors in the system with the ability to access various

portions of the memory map. The software involved in managing the memory on the master

processor and on the board, as well as managing memory hardware mechanisms, consists of the

device drivers for the management of the overall memory subsystem.

Device drivers for the management of ‘Memory Subsystem’ -‘Memory Subsystem’ includes

all types of memory management components, such as

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :22

-Memory Controller ICs/Modules -MMUs,

-Different types of memories in the memory map, such as CPU registers, cache, ROM, DRAM

etc.

-The memory management software must provide ability to the master processor of the system to

access various portions of the memory map. The memory management software should manage -

The master processor’s on-chip memories.

-The external memories on the embedded board -Memory hardware mechanisms

Eg:-.Memory Controllers, MMUs.

Following are some of the device drivers for handling memory

Memory Subsystem Start up :- This driver is used for initialization of the hardware upon

power-on or reset (initialize TLBs for MMU, initialize/configure MMU).

Memory Subsystem Shutdown :- This driver is used for configuring hardware into its power-

off state.

Memory Subsystem Disable :- This driver is used for allowing other software to disable

hardware on-the-fly (disabling cache).

Memory Subsystem Enable :- This driver is used for allowing other software to enable

hardware on-the-fly (enable cache).

Memory Subsystem Write :- This driver is used for storing in memory a byte or set of bytes

(i.e., in cache, ROM, and main memory).

Memory Subsystem Read :- This driver is used for retrieving from memory a “copy” of the

data in the form of a byte or set of bytes (i.e., in cache, ROM, and main memory).

3. On-board Bus Device Drivers

Every bus is associated with some protocol that defines

• How devices gain access to the bus.

• The rules must followed by the devices to communicate over the bus

• The signals associated with the bus lines. Bus protocol is supported by the bus device

drivers

Following are some of the device drivers for handling on board bus

Bus Startup :- This driver is used for initialization of the bus upon power-on or reset.

Bus Shutdown :- This driver is used for configuring bus into its power-off state.

Bus Disable :- This driver is used for allowing other software to disable bus on-the-fly.

Bus Enable :- This driver is used for allowing other software to enable bus on-the-fly.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 3 Page No :23

Bus Acquire :- This driver is used for allowing other software to gain singular (locking) access

to bus.

Bus Release :- This driver is used for allowing other software to free (unlock) bus.

Bus Read :- This driver is used for allowing other software to read data from bus.

Bus Write :- This driver is used for allowing other software to write data to bus.

Bus Install :- This driver is used for allowing other software to install new bus device on-the-fly

for expandable buses.

Bus Uninstall :- This driver is used for allowing other software to remove installed bus device

on the- fly for expandable buses.

MODULE 4

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 1

MODULE IV

Syllabus

Programming concepts of Embedded programming – Features of Embedded C++ and

Embedded Java (basics only). Software Implementation, Testing, Validation and debugging,

system-on- chip. Design Examples: Mobile phones, ATM machine, Set top box

ADVANTAGES OF ASSEMBLY-LANGUAGE PROGRAMMING (ALP)

 Assembly instructions are specific to the processor, memory, ports & internal devices.

 It gives a ‘precise control’ of the hardware devices in the processor.

 Assembly code makes full use of the specific features of the ‘Instruction Set’ &

the ‘Addressing Modes’ of the processor.

 Assembly codes are ‘Compact’, ‘Processor-Sensitive’ & ‘ Memory-Sensitive’

 Thus, the system needs a smaller memory only for program storage .

 No additional memory is needed due to proper data size selection, conditions etc.

 Assembly program code is also not ‘Compiler-Specific’& ‘Library Function-Specific’.

 Program codes such as ‘Device Driver’ codes may need only a few assembly

program instructions .

 For eg, Consider a small embedded system such as a timer device in a microwave

oven or automatic washing machine or an automatic chocolate-vending machine .

 Assembly codes for the above timer can be made as compact & precise by

conveniently written using assembly language coding.

 Bottom-up-Design’ approach is easily usable for assembly language coding .

 It is an approach of designing program in which coding/ programming is first done

for the basic functional modules for a specific set of actions .

 Then use these modules to build a bigger modules ie. Programs for ‘Delay’,

‘Counting’, finding ‘Time Intervals’ & many applications can be written or coded first

.Then the final program is designed by integrating these modules.

ADVANTAGES OF HIGH-LEVEL LANGUAGE PROGRAMMING

High-level language coding in C, C++, C#, Visual C++ or Java provides great

programming ease & many advantages. Most of the embedded programming is done in the

high-level language. High-level language coding makes the program development cycle

short duration. It enables the use of the ‘Modular-Programming’ approach. It also facilitates

the program development with ‘Top-Down’ design approach.

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 2

‘Program-Development Cycle’ in high-level language is of much shorter duration due to the
followings:

(i) Use of Routines (called ‘functions’ in ‘C/C++’ & ‘Methods’ in Java).

(ii) Use of standard library functions.

(iii) Use of ‘Modular Programming’ approach.

(iv) ‘Top-Down’ design or ‘Object-Oriented’ design approaches.

Function - A ‘Function’ defines ‘A set of Statements & Commands’ or a ‘Method of

Operation’ which runs when that function is called.

Library Functions - ‘Library Functions’ are standard functions, which are readily available

to a programmer & the codes for them are not defined by programmer.

Eg., A ‘square root()’ function . The use of the standard library function, square root(),

saves the programmer’s time for coding .

New sets of library functions such as Delay(), Wait () & Sleep() exist in an embedded

system-specific C or C++ compiler.

Modular Programming - ‘Modular Programming’ is an approach in which the building

blocks of a software program are some other re-usable software components. A ‘module’ is

built by software components & the components are built by a set of functions.

Eg., Making a ‘Calculator’ software using a ‘Java’ can be done as modular

programming using the pre-built ‘Java program modules’ for calculator ‘keys’.

Just as an IC (integrated circuit) which has several circuits integrated into one chip;

similarly a module building block that may call several functions & library functions.

A module is tested for a well-defined goal and data inputs & outputs. It should not affect

any data other than the one it operates

Top-Down Design - ‘Top-down’ design is a programming approach used in high-level

languages in which the main() program is first designed (or written), then its ‘Modules’,

‘Sub- Modules’ & finally the ‘functions’ .

(2) A High-level language program facilitates declarations of data types.

Data type declarations simplify the programming. For example there are four types of

integers: int, unsigned int, short & long.

When dealing with positive only values only, we declare a variable as ‘unsigned int’ . In

arithmetical calculations, we need a signed integer, int (32 bits) . An integer can also be

declared as short (16 bits) or long (64 bits). Another data type is char is used to manipulate

the text & strings for a character.

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 3

(3) High-level program facilitates 'Type Checking'

This makes the program less prone to error. For eg., The ‘Type Checking’ does not

permit subtraction, multiplication & division on the ‘Char’ data types , but it permit ‘plus’

operator to used for ‘concatenation’ when using char data types . It permits the 'plus'

operator to be used for arithmetic addition when using int, unsigned int, short & long type

of data.

(1) The high-level language program facilitates use of program-flow-control structures such

as loops & conditional statements (Eg., while, do-while, for, break, continue etc.)

(2) A ‘high-level’ language program code is not ‘Processor-Specific’. Hence it is ‘Portable’.

Therefore, when the hardware changes, only the modules for the device drivers &

device management, initialization etc. need modification . Operating System (OS) takes care

of the above issues.

ADVANTAGES OF EMBEDDED ‘C’

Embedded system programmers prefer ‘C’ for the following special features/reasons:

(i) Assembly codes can be embedded into C program codes using ‘in-line assembling’.

(ii) Availability of special modules in ‘C’ compilers for the embedded systems .

(iii) Availability of library codes that can directly insert into the user program codes

In-Line Assembly.

(iv) It is the possible facility of inserting assembly language codes in-between a high-

level language code .

(v) So, the complex part of the program can be written in high-level language & the

assembly language can be used for the code sections that need direct hardware control.

OBJECT-ORIENTED PROGRAMMING

‘C++’ is an ‘Object-Oriented Programming’ (OOP) language. An object-oriented language

provides for the following:

(1) Defining of an ‘Object’ or ‘Set of Objects’, which are common or similar objects within

a program & between many programs.

(2) Defining the methods/ functions that manipulate the objects without modifying their

definitions.

(3) Creation of ‘Multiple Instances’ of the defined object or set of objects or new objects.

(4) Inheritance .

(5) Data Encapsulation .

(6) Design of re-usable components.

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 4

EMBEDDED PROGRAMMING IN C++ -

‘Embedded C++’ is a ‘C++ version’ which makes large program development simpler

by providing OOP features of using an object.

We use objects in a way that minimizes memory needs & run-time overheads in the

system. Embedded system programmers use C++ due to the OOP features such as ‘Software

Re- Usability’, ‘Extendibility’, ‘Polymorphism’, ‘Function Over Riding’ & ‘Operator

Overloading’.

C++ offers portability with the ‘C’ codes & ‘Assembly’ codes - C++ also provides

overloading of operators

ADVANTAGES OF ‘C++’

Program coding in C++ codes provides the following advantage of OOP as well as the

advantage of both ‘C’ & ‘Assembly’ language programming.

(1) Class & Objects.

(2) Inheritance.

(3) Method Overloading & Method over-riding.

(4) Operator Overloading.

(5) Polymorphism.

(1) Class & Objects

A ‘class’ binds all the member functions together for creating ‘objects’ - A class can

be declared as public or private. The data access are restricted when a class is declared

private.

The objects will have memory allocation as well as default assignments to its

variables that are not declared ‘Static’. Let us assume that a ‘Software Timer’ is an object . It

gets the count input from a real-time clock (RTC).It has a ‘Terminal Count Value’ after

which it generates a ‘Software Interrupt’ . It is initialized to a ‘Initial Count’ value.

Now consider the C++ codes for a ‘class RTCSWT’ - A no. of software timer objects

can be created as the instances of ‘RTCSWT’. Each object of RTCSWT can have different

values of ‘Present’, ‘Initial’ & ‘Terminal’ count values -But it has identical methods to

manipulate the count.

(2) Inheritance

A class can derive (inherit) from another class also - From the above example,

Creating a ‘Child Class’ of RTCSWT as a ‘Parent Class’ creates a new application of the

RTCSWT.

(3) Method Overloading & Method over-riding

‘Methods’ (or ‘C functions’) can have the same name in the inherited class. This is

called ‘Method Overloading’ or ‘Function Overloading’. ‘Methods/ Functions’ can have the

same name as well as the same no. & type of arguments in the inherited class . This is called

‘Method Over- riding’ or ‘Function Over-Riding’ . These are the two significant features that

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 5

are extremely useful in a large program.

(4) Operator Overloading

Operators in C++ can be overloaded like method/function overloading. For example,

usually the ‘++’ operator is used for ‘post-increment’ & ‘pre-increment’ and the ‘!’ operator

is used for a not operation) . But using operator overloading, the‘++’ operator and ‘!’

operator can be overloaded to perform a set of operations.

(5) Polymorphism

A ‘C++’ class has object features. It can be extended & ‘Child Classes’ can be derived

from it. A no. of child classes can be derived from a common class . This feature is called

‘Polymorphism’.

DISADVANTAGES OF ‘C++’

The program codes becomes lengthy when certain features of the standard C++ are

used such as:

(1) Multiple Inheritances (Deriving a class from many parents).

(2) Exceptional Handling in C++ .

(3) Virtual base classes of C++.

(4) Template in C++.

(5) Classes for I/O streams (cin & cout).

(i) The I/O stream library provides for the input & output streams of characters
(bytes) .

(ii) Two I/O stream library functions are ‘cin’ for ‘character in’ & ‘cout’ for ‘char out’

Additional Features of Embedded C++

The special features in C++ for Embedded programming environment are :

(1) Micro-controller specific program coding features exits for handling the data at the

‘Ports’ of a micro-controller. Handling ‘Special-Function Registers’ of a micro-controller .

Handling of interrupt functions (ISR). ‘Bit Addressing’ of bits in the registers & memory.

(2) Embedded C++ uses global variables for handling interrupts & ISRs.

(3) Special modifiers are used in embedded C++ for various cases.

Compiler for Embedded C++

‘Embedded C++’ is a version of ‘C++’ that provides for a selective disabling some of

the features of ‘C++’ so that there is a less run-time delay & less library requirement. A

special compiler for an embedded system can facilitate the above mentioned disabling of

specific features provided in C++.

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 6

The library functions are available & they can be ported in C directly -The I/O

stream library functions in an embedded C++ compiler are also re-entrant - Hence, using

embedded C++ compilers or the special compilers make the ‘C++’ a significantly more

powerful coding language than ‘C’ for embedded systems.

Code & Memory Optimization in ‘Embedded C++ Program

Declare ‘private’ as many classes as possible which helps in code optimization. Use

‘char’, ‘int’ & ‘boolean’ in place of the objects as function arguments . Use local variables as

much as possible instead of using global variables.

EMBEDDED PROGRAMMING IN JAVA

‘Embedded Java’ provides an embedded run-time environment. Java programming

starts from coding for the classes. A class has members, a class contain many fields, a ‘field’

is like a variable or structure (struct) in C. A method defines the operations on the fields,

similar to function in C. ‘Class’ is a named set of codes that has a no. of members such as

‘Data Fields’ (variables)& ‘Methods’.

Each class is a logical group with ‘Identity’, ‘State’ & ‘Behaviour Specifications’. Java has

large no. of readily available classes for ‘I/Os’, ‘Networking’, ‘Security’ etc. Object-oriented

features & ready availability of classes make a large program development simpler task

using Java. Class is used to create objects with instances of these members

‘Instance Fields’ & ‘Instance Methods’ of class are the members, whose new instances

are also created as when the objects are created from the class. The operations are

performed on the objects by passing the messages to objects in object-oriented

programming.

Java Program Element and Explanation

Class:- A class is a basic structural unit in a Java program. A class consists of data fields and

methods that operate on the fields. A class defines a group of objects with similar

attributes and common behaviour and relationships. A class is used to create

objects as its instances. It has instance and static fields and methods.

Inheritance :- Java class inherits members when a Java class is extended from a parent

class called super class. The inherited instance fields and methods can be over-

ridden by redefining them in extended class using same name, arguments and

argument-types. Methods can be overloaded by redefining them for different

numbers or types of arguments.

Local variable :- A variable within a block of codes is defined inside the curly braces and

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 7

has limited scope

Instance method :- Blocks of Java codes, which are given a name, a call (invocation) is made

by other Java codes that can also pass (transmit) the needed reference to the

values, parameters, and so on.

Instance field :- An identifier with a name and using that name a declaration is made in a

Java class. It does have a default value and the field is also present in the objects

which are instances of the class

Interface:- Interface has only the abstract methods and the corresponding static data fields

and the methods do not, have implementation in the interface. A Java class which

is interfaced to an interface implements the abstract methods specified at the

interface

Data types :- Java class uses primitive data types: byte (8-bit), short (16-bit), int (32-bit),

long (64-bit), float, double, unicode char (16-bit). Java class uses reference data

types. A reference can be to the class type in which there are groups of fields

and methods to operate on the fields. A reference can be to the array type in

which there are groups of objects as array elements.

Exception :- Java has built-in exception classes. The occurrences of exceptional conditions

are handled when exception is thrown. It is also possible to define exception

conditions in a program so that exceptions are thrown from try block codes and

caught by catch exception method

ADVANTAGES OF JAVA PROGRAMMING

Java has advantages for embedded programming as follows

(1) Java is completely an OOP language. It starts with classes .Application program consists

of classes, objects & interfaces.

(2) There is a huge library of pre-built classes is available in Java platform which makes

program development quick.

(3) Java has in-built support for creating multiple ‘Threads’ . It obviates the need for an

operating system (OS) based scheduler for handling threads.

(4) After compiling, a Java program generates ‘Java Byte Codes’ (similar to HEX files).These

‘Java byte codes’ are executed on Java Virtual Machine (JVM) software module installed on

a computing machine/ platform. JVM takes the ‘Java byte codes’ as its input & runs on the

any platform defined by the processor & Operating System (OS). In embedded systems, the

JVM can be stored at the ROM . Therefore ‘Java byte codes’ can run on different types

platforms . ‘Platform Independence’ in running the compiled codes permit Java for network

applications.

(5) Platform independence of Java gives ‘code portability’ feature with respect to the

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 8

processor & OS used ie. A Java program once written can run anywhere (or any processor

platform/ any OS).

(6) Java is the language for most ‘Web Applications’. Java allows computing machines of

different types to communicate on the web.

(7) Java is easier to learn by a C++ programmer.

(8) Java does not permit multiple inheritances. It does not permit operator overloading

except for the ‘plus’ sign which is used for string concatenation as well as arithmetic

addition. Java does not permit dual way of object manipulation by value & reference -

Unlike C/C++, There are no ‘struct’, ‘enum’, ‘typedef’ etc.

(9) Java has code extensibility.

(10) Java does not permit pointer manipulation instructions . So Java is ‘Robust’ in the sense

that memory leaks & memory-related errors do not occur . A memory leak occurs, for

example, when attempting to write the end of a bounded array.

DISADVANTAGES OF JAVA PROGRAMMING

Java has following disadvantages for embedded programming as follows:

(1) Since Java codes are executed by the JVM, it runs comparatively slowly. This

disadvantage can be overcome as follows:

✓ Java byte codes can be converted to native machine codes for fast running using Just-

In- Time (JIT) compilation .

✓ A ‘Java accelerator co-processor’ can be used in the system, for the faster running of

Java codes.

(2) Java byte codes that are generated need a larger memory . An embedded Java system

may need a minimum of 512 kB ROM & 512 kB RAM because of the need to first install JVM

software & run the application.

SOFTWARE IMPLEMENTATION

Software Development Life Cycle (SDLC) is a process used in the software industry

to design, develop & test high quality software

SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

It is also called as ‘Software Development Process’. SDLC is a framework defining

tasks performed at each step in the software development process. ‘ISO/ IEC 12207’ is an

international standard for software life-cycle processes It aims to be the standard that

defines all the tasks required for developing & maintaining software .

SDLC is a process followed for a software project, within a software organization. It

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 9

consists of a detailed plan describing how to develop, maintain, replace & alter or enhance

specific software. The life cycle defines a methodology for improving the quality of

software & the overall development process.

(1) Planning & Requirement Analysis :-

Requirement analysis is the most important & fundamental stage in SDLC . It is

performed by the senior members of the team with inputs from the customer, the sales

department, market surveys & domain experts in the industry . This info. is then used to

plan the basic project approach & to conduct product feasibility study in the economical,

operational & technical areas.

Planning for the quality assurance requirements & identification of the risks associated

with the project is also done in the planning stage. The outcome of the technical feasibility

study is to define the various ‘Technical Approaches’ that can be followed to implement the

project successfully with minimum risks.

(2) Defining Requirements –

Once the requirement analysis is done the next step is to clearly define & document

the product requirements & get them approved from the customer or the market analysts.

This is done through an SRS (Software Requirement Specification) document which

consists of all the product requirements to be designed & developed during the project life

cycle.

(3) Designing the Product Architecture –

SRS is the reference for product architects to come out with the best architecture for

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 10

the product to be developed . Based on the requirements specified in SRS, usually more
than one design approach for the product architecture is proposed & documented in a DDS
(Design Document Specification)

This DDS is reviewed by all the important stakeholders & based on various
parameters as ‘Risk Assessment’, ‘Product Robustness’, ‘Design Modularity’, ‘Budget’, ‘Time
Constraints’ etc. for selecting the best ‘Design Approach’ for the product .

A design approach clearly defines all the architectural modules of the product along
with its communication & data flow representation with the external & third party modules
(if any) - The internal design of all the modules of the proposed architecture should be
clearly defined with the minutest of the details in DDS

(4) Building or Developing the Product

In this stage of SDLC the actual development starts & the product is built - The
programming code is generated as per DDS during this stage - If the design is performed in
a detailed & organized manner, code generation can be accomplished without much hassle.

Developers must follow the coding guidelines defined by their organization &
programming tools like compilers, interpreters, debuggers, etc. are used to generate the
code

Different high level programming languages such as C, C++, C#, Pascal, Java & PHP

are used for coding - The programming language is chosen with respect to the type of

software being developed

(5) Testing the Product

This stage is usually a subset of all the stages as in the modern SDLC models, the
testing activities are mostly involved in all the stages of SDLC. However, this stage refers to
the testing .only stage of the product where product defects are reported, tracked, fixed &
re-tested, until the product reaches the quality standards defined in the SRS .

(6) Deployment in the Market & Maintenance –

Once the product is tested & ready to be deployed it is released formally in the

appropriate market . Sometimes product deployment happens in stages as per the business

strategy of that organization . The product may first be released in a limited segment &

tested in the real business environment (UAT- User Acceptance Testing).

EMBEDDED SOFTWARE TESTING

Testing is the process of evaluating a system or its component(s) with the intent to
find whether it satisfies the specified requirements or not . In simple words, testing is
executing a system in order to identify any gaps, errors, or missing requirements in
contrary to the actual requirements.
STLC : Software Testing Life Cycle

Software Testing Life Cycle (STLC) is defined as a sequence of activities conducted

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 11

to perform Software Testing . It consists of series of activities carried out methodologically

to help certify your software product.

Each of these stages have a definite ‘Entry & Exit Criteria’, ‘Activities’ & ‘Deliverables’
associated with it.
Entry Criteria : Entry Criteria gives the prerequisite items that must be completed before
testing can begin.
Exit Criteria : Exit Criteria defines the items that must be completed before testing can
be concluded.
(1) Requirement Analysis -

During this phase, test team studies the requirements from a testing point of view to
identify the testable requirements . The QA (Quality Assurance) team may interact with
various stakeholders (Client, Business Analyst, Technical Leads, System Architects etc) to
understand the requirements in detail. Requirements could be either

(i) Functional Requirements (Defining what the software must do).
(ii) Non-Functional Requirements (Defining system performance / Security
availability) ‘Automation feasibility’ for the given testing project is also done in this
stage.

Steps taken - Identify types of tests to be performed.

 -Gather details about testing priorities & focus.
- Prepare ‘Requirement Traceability Matrix’ (RTM).
- Identify test environment details where testing is supposed to be carried out .
- Automation feasibility analysis (if required).

(2) Test Planning –
Typically , in this stage, a Senior QA (Quality Assurance) manager will determine

effort & cost estimates for the project & would prepare and finalize the ‘Test Plan’. .In this
phase, Test Strategy is also determined.
Steps taken - Preparation of test plan/ strategy document for various types of testing.

- ‘Test Tool’ Selection.
- Test effort estimation.
- Resource planning & Determining roles and responsibilities.

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 12

- Training Requirement.
(3) Test Case Development –

This phase involves creation, verification & rework of test cases and test scripts .
Test data, is identified/created & is reviewed & then reworked as well.
Steps taken - Create test cases, automation scripts (if applicable).

- Review & baseline test cases and scripts.

- Create test data (If Test Environment is available)

(4) Test Environment Setup –
Test environment decides the software & hardware conditions under which a work

product is tested. Test environment set-up is one of the critical aspects of testing process &
it can be done in parallel with ‘Test Case Development Stage’. Test team may not be
involved in this activity if the customer/development team provides the test environment
in which case the test team is required to do a readiness check (smoke testing) of the given
environment
Steps taken - Understand the required architecture, environment set-up & Prepare

hardware and software requirement list for the Test Environment.

- Setup test Environment & test data - Perform smoke test on the build.

(5) Test Execution –
During this phase the testers will carry out the testing based on the test plans & the

test cases prepared. Bugs will be reported back to the development team for correction &
re-testing will be performed.
Steps taken - Execute tests as per plan.

- Document test results & Log defects for failed cases.
- Map defects to test cases in RTM.
- Retest the Defect fixes.
- Track the defects to closure .

(6) Test Cycle Closure –
Testing team will meet , discuss & analyze testing artifacts to identify strategies that

have to be implemented in future, taking lessons from the current test cycle . The idea is to
remove the process bottlenecks for future test cycles & share best practices for any similar
projects in future. Steps taken - Evaluate cycle completion criteria based on Time, Test
coverage, Cost, Software,

Critical Business Objectives , Quality.
- Prepare test metrics based on the above parameters.
- Document the learning out of the project.

- Prepare Test closure report.
- Qualitative & quantitative reporting of quality of the work product to the
customer.
- Test result analysis to find out the defect distribution by type & severity.

Types of Testing

1) Black-Box Testing - The technique of testing without having any knowledge of the
interior workings of the application is called black-box testing.

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 13

➢ The tester is oblivious to the system architecture & does not have access to the
source code (or program) .
➢ Typically, while performing a black-box test, a tester will interact with the system's
user interface by providing inputs & examining outputs without knowing how & where
the inputs are worked upon.

Advantages of Black-Box Testing

1) Well suited & efficient for large code segments

2) Code access is not required

3) Clearly separates user's perspective from the developer's perspective through

visibly defined roles

4) Large no. of moderately skilled testers can test the application with no

knowledge of implementation, programming language, or operating systems

Disadvantages of Black-Box Testing

1) Limited coverage, since only a selected no. of test scenarios is actually performed

2) Inefficient testing, due to the fact that the tester only has limited knowledge

about an application

3) Blind coverage, since the tester cannot target specific code segments or error-prone
areas

4) The test cases are difficult to design

2) White-Box Testing - White-box testing is the detailed investigation of internal

logic & structure of the code . White-box testing is also called ‘Glass Testing’ or ‘Open-Box

Testing’.

➢ In order to perform white-box testing on an application, a tester needs to know
the internal workings of the code.
➢ The tester needs to have a look inside the source code & Find-out which
unit/chunk of the code is behaving inappropriately.

Advantages of White-Box Testing

1) As the tester has knowledge of the source code, it becomes very easy to find out

which type of data can help in testing the application effectively

2) It helps in optimizing the code

3) Extra lines of code can be removed which can bring in hidden defects

4) Due to the tester's knowledge about the code, maximum coverage is attained

during test scenario writing

Disadvantages of White-Box Testing

1) Due to the fact that a skilled tester is needed to perform white-box testing, the

costs are increased

2) Sometimes it is impossible to look into every nook and corner to find out hidden

errors that may create problem, as many paths will go untested

3) It is difficult to maintain white-box testing, as it requires specialized tools like

code analyzers & debugging tools

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 14

3) Grey-Box Testing - Grey-box testing is a technique to test the application with

having a limited knowledge of the internal workings of an application

➢ In software testing, the phrase the more you know, the better carries a lot of
weight while testing an application.

➢ Mastering the domain of a system always gives the tester an edge over someone
with limited domain knowledge.

➢ Unlike black-box testing, where the tester only tests the application's user
interface; in grey-box testing, the tester has access to design documents and the
database.

➢ Having this knowledge, a tester can prepare better test data and test scenarios
while making a test plan.

Advantages of Grey-Box Testing

1) Offers combined benefits of black-box & white-box testing wherever possible

2) Grey box testers don't rely on the source code; instead they rely on interface

definition and functional specifications

3) Based on the limited information available, a grey-box tester can design

excellent test scenarios especially around communication protocols and data type

handling

4) The test is done from the point of view of the user & not the designer

Disadvantages of Grey-Box Testing

I) since the access to source code is not available, the ability to go over the code and test

coverage is limited

2) The tests can be redundant if the software designer has already run a test case

3) Testing every possible input stream is unrealistic because it would take an

unreasonable amount of time; therefore, many program paths will go untested

Comparison of Black-Box testing, Grey-Box Testing & White-Box Testing

Black-Box Testing White-Box Testing Grey-Box Testing

The internal workings of an
application need not be
known

The tester has limited
knowledge of the internal
workings of the
application

Tester has full knowledge of
the internal workings of
the application

Also known as closed- box
testing, data-driven testing,
or functional testing

Also known as
translucent testing, as
the tester has
limited knowledge of
the insides of the
application

Also known as clear-box
testing, structural testing,
or code-based testing

Performed by end-users and
also by testers & developers

Performed by end-users and
also by testers & developers

Normally done by testers &
developers

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 15

Testing is based on external
expectations; Internal
behavior of the application is
unknown

Testing is done on the basis of
high-level database diagram
& data flow diagram

Internal workings are fully
known & the tester can
design test data accordingly

It is exhaustive & the least
time-consuming

Partly time-consuming &
exhaustive

The most exhaustive & time-
consuming type of testing

Not suited for algorithm
testing

Not suited for algorithm
testing

Suited for algorithm testing

This can only be done by
trial & error method

Data domains & internal
boundaries can be tested,
if
known

Data domains & internal
boundaries can be better
tested

DEBUGGING
Debugging is a systematic process of spotting & fixing the no. of bugs (or defects), in

a piece of software so that the software is behaving as expected. It is harder for ‘complex
systems’ in particular when various sub-systems are tightly coupled as changes in one
system or interface may cause bugs to emerge in another.

Debugging is a developer activity. Effective debugging is very important before
testing begins to increase the quality of the system.
In general, three categories for debugging approaches may be proposed.

(i) Brute Force - The brute force category of debugging is probably the most common &
efficient method for isolating the cause of a software error.

 Brute force debugging methods are applied when all methods of debugging fail.

 Using a philosophy, memory dumps are taken, run time traces are invoked & the
program is loaded with write statement.

 When this is done, one finds a clue by the information which leads to cause of an error.

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 16

(ii) Back Tracking Method - It is a popular approach of debugging which is used
effectively in case of small applications.

• The process starts from the site where a particular symptom gets detected, from
there on backward tracing is done across the entire source code till we are able to lay
our hands on the site being the cause.
• Unfortunately, as the no. of source lines increases, the no. of potential backward
paths may become unmanageably large.

(iii) Cause Elimination ‘Brute Force’ Approach - The cause elimination approach to
debugging, is manifested by induction (or deduction).

• This approach is also called ‘Induction & Deduction
• Data related to the error occurrence are organized to isolate potential causes
• A "cause hypothesis" is devised & the data are used to prove or disprove the

hypothesis.

• Alternatively, a list of all possible causes is developed & tests are conducted to
eliminate each.

• • If initial tests indicate that a particular cause hypothesis shows promise, the
data are refined in an attempt to isolate the bug.

VALIDATION
The process of evaluating software during the development process or at the end

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 17

of the development process to determine whether it satisfies specified business
requirements.

‘Validation Testing’ ensures that the product actually meets the client's needs.
It can also be defined as to demonstrate that the product fulfills its intended use

when deployed on appropriate environment

Unit Testing
A level of the software testing process where individual units of software are tested.

The purpose is to validate that each unit of the software performs as designed
Integration Testing.

A level of the software testing process where individual units are combined & tested
as a group. The purpose of this level of testing is to expose faults in the interaction
between integrated units.
System Testing

A level of the software testing process where a complete, integrated system is tested.
The purpose of this test is to evaluate the system's compliance with the specified
requirements Acceptance Testing

A level of the software testing process where a system is tested for acceptability.
The purpose of this test is to evaluate the system's compliance with the business
requirements and assess whether it is acceptable for delivery

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 18

SYSTEM-ON-CHIP (SoC)
SoC is a complete embedded system on a single chip. Usually includes

programmable processors, memory, accelerating function units, input/output interfaces,
software, re-usable intellectual property. It is an integrated circuit that integrates all
components of a computer or other electronic systems. It may contain digital, analog,
mixed signals, radio frequency functions all are embedded in a single substrate. Soc
integrates a microcontroller with advanced peripherals like graphics processing unit, Wi-
Fi module, or co-processor

There are two approaches to design an embedded system such as

I. Using System on Chip (SoC)

2. Using chips on a circuit Board (COB)

System-on-chip approach is used for extensively used systems, for example mobile

phone and cameras.

In chips on a circuit board approach, separate chips for the microprocessor or ASIP,

memory, single-purpose processors and peripherals are interconnected on a board. All

chips interface with an appropriate circuit. The chips interconnect on a board and

software embeds into memory in a chip.

Types of SoC - In general, there are three distinguishable types of SoCs.

(1) SoCs built around a microcontroller.

(2) SoCs built around a microprocessor.
(3) Specialized SoCs designed for specific applications that do not fit into the above
two categories

A separate category may be Programmable SoC where some of the internal elements
are

not predefined and can be programmable in a manner analogous to a field-
programmable gate array (FPGA)or a complex programmable logic device (CPLD).

A typical SoC consists of a

 Microcontroller, microprocessor or digital signal processor (DSP) core –
multiprocessor socs (mpsoc) having more than one processor core.

 Memory blocks including a selection of ROM, RAM, EEPROM and flash memory.
 Timing sources including oscillators and phase-locked loops.
 Peripherals including counter-timers, real-time timers & power-on reset

generators. External interfaces, including industry standards such as USB, firewire,
Ethernet, USART, SPI.

 Analog interfaces including ADCs and DACs. Voltage regulators and power
management circuits

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 19

A bus – either proprietary or industry-standard such as the AMBA bus from ARM Holdings –
connects these blocks. DMA controllers route data directly between external interfaces and
memory, bypassing the processor core and thereby increasing the data throughput of the SoC

A SoC consists of both the hardware, described above, and the software controlling
the microcontroller, microprocessor or DSP cores, peripherals and interfaces.

The design flow for a SoC aims to develop this hardware and software in parallel.
Most SoCs are developed from pre-qualified hardware blocks for the hardware elements
described above, together with the software drivers that control their operation. Have a
particular importance are the protocol stacks that drive industry-standard interfaces like
USB.

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 20

The hardware blocks are put together using CAD tools; the software modules are
integrated using a software-development environment.

➢ Once the architecture of the SoC has been defined, any new hardware elements are
written in an abstract language termed RTL which defines the circuit behavior

➢ These elements are connected together in the same RTL language to create the full
SoC design.
Advantage of SOC

 The System has a very high performance, functionalities and very low power
dissipation.

 Therefore, SoCs are used in Embedded systems, which are extensively and

commonly used, need the small size, high system performance, much functionality,

very low power dissipation and have low energy consumption.

 Examples of extensively used systems are mobile Phones. Tablets, computers, Set-

top boxes, digital TVs and cameras.

SoC Challenges
o More complex, more functions, higher gate counts, faster , cheaper, smaller, time

to
market

o To handle these challenges the system should design at multiple abstraction
levels,

integration of heterogeneous technologies & tools, signal integrity and timing, power
management, soc test methodology

Soc design: IP Based Design

o Intellectual property cores:

o Parametrized components with standard interfaces facilitating high level
synthesis.

Available in three forms

➢ Hard: black –box in optimized layout form and encrypted simulation model. Eg-
Microprocessor .

➢Firm: synthesized netlist which can be simulated and changed if needed.

➢Soft: Register transfer level – user is responsible for synthesis and layout.

CASE STUDY OF MOBILE-PHONES

Mobile phones are smart and each has many APIs. Examples are phones SMS (Short
Message Service), MMS (Multimedia Messaging Service) e-mail, addles book, web browsing,
calendar, task-to-do list, WordPad, pocket-Excel, pocket word, note-pad for memos, pocket-
PPTs, slide shows, and camera.

Mobile phones with large touch scream use a virtual keypad and small screens use a

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 21

T9 Keypad. Here we discuss about case study relates to "SMS create Application" in a
mobile phone.

REQUIREMENTS

 A processor, keypad, screen, scratch pad memory, persistence memory
 and communication units are required for SMS create and send application.

 Scratch pad memory addresses are used f or temporary saving of character (bytes)
during an application.

 A Persistence memory addresses are used such that as soon as a change is made in
the byte. it persists even after the power switch off.

When there is a change, the identical change is reflected in other correlated objects. For
example, if a name is edited in a file for the contacts, the same change takes in the file for
Address Book for sending the e-mails.

Cursor key

The screen is used for displaying mends for GUIs. There are four cursor keys
I. Up – CI
2. Down - C2

3. Left - C3
4. Right - C4

When the cursor key is pressed towards left, it moves the cursor left, Right moves
the cursor Right, towards up moves the cursor up or towards down to move down.

The same key is used for movements of the cursor. In a computer keyboard, four

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 22

different cursor keys are used.

Command/Menu Keys

 There are four commend keys (Right-corner second-Row, Left-corner Second-Row,
Right-corner first-Row and Left-corner first-Row) denoted by Key2 Row2, Key1
Row2, Key2 Row1 and Key1 Row1

 There are nine T9 keys for nine numbers 1 to 9. well as alphabets a to z (or A to Z).
 Entered alphanumeric text in small case or capital case is per mode-key state
 Text character depends on the state of the T9 key.
 There are two mode-keys (key MI and key M2) and one key 0 key for keying in a

text character number 0 or space.

Command Function

For messages command, a key (for example) left-hand first-Row command key
(Key 1Row1) is used and the user selects the command messages.

Options

The cursor at one of the following command options

I. Text messages

2. Voice message and

3. Mini browser messages.

There are certain application-options are displayed at the displayed command option such as

I. Create message

2. Inbox

3 Sent items

4. Templates

5. My folders

6. Distribution Lifts

7. Delete messages and

8. Message settings

SMS Create Application

For selecting SMS create application option, the create message application option is
selected as the application using cursor and click. There are two types of messages can be
created such as Text and Numeric page.

Tasks

We can select the task option using the cursor at one of the following task options

EC 308 Embedded Systems Lecture Notes

Sajitha A S ,Assistant Professor,ECE,NCERC,Pampady | 23

I. Add Number

2. Add E-mail

3. Add List

4. Edit Message

5. List Recipient and

6. Send.

Add number is selected as the task option. On Return from the task Add Number, a
new task option Edit Message is selected

On Return from task Edit message, the neat task option send is selected.

If the message is sent to two numbers, then before send, a number is added using
the task Add Number

MODULE 5

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :1

Syllabus

Subject : EC 308 EMBEDDED SYSTEMS

Module 5

Inter Process Communication and Synchronization -Process, tasks and threads –Shared data–

Inter process communication - Signals – Semaphore – Message Queues – Mailboxes Pipes –

Sockets – Remote Procedure Calls (RPCs).

Process

Process Features

– A process consists of executable program (codes), state of which is controlled by OS, the

state during running of a process represented by process-status (running, blocked, or

finished), process structure—its data, objects and resources, and process control block

(PCB).

– Runs when it is scheduled to run by the OS (kernel)

– OS gives the control of the CPU on a process‘s request (system call).

– Runs by executing the instructions and the continuous changes of its state takes place as

the program counter (PC) changes.

– Process is that executing unit of computation, which is controlled by some process (of the

OS) for a scheduling mechanism that lets it execute on the CPU and by some process at

OS for a resource management mechanism that lets it use the system- memory and other

system resources such as network, file, display or printer.

– Application program can be said to consist of number of processes

Example - Mobile Phone Device embedded software

– Software highly complex.

– Number of functions, ISRs, processes threads, multiple physical and virtual device

drivers, and several program objects that must be concurrently processed on a single

processor.

– Voice encoding and convoluting process─ the device captures the spoken words through

a speaker and generates the digital signals after analog to digital conversion, the digits are

encoded and convoluted using a CODEC,

– Modulating process,

– Display process,

– GUIs (graphic user interfaces), and

– Key input process ─ for provisioning of the user interrupts

Process Control Block

– A data structure having the information using which the OS controls the Process state.

– Stores in protected memory area of the kernel.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :2

– Consists of the information about the process state

Information about the process state at Process Control Block:

– Process ID,

– Process priority,

– Parent process (if any),

– Child process (if any), and

– Address to the next process PCB which will run,

– Allocated program memory address blocks in physical memory and in secondary (virtual)

memory for the process-codes,

– Allocated process-specific data address blocks

– Allocated process-heap (data generated during the program run) addresses,

– Allocated process-stack addresses for the functions called during running of the process,

– Allocated addresses of CPU register-save area as a process context represents by CPU

registers, which include the program counter and stack pointer

– Allocated addresses of CPU register-save area as a process context [Register- contents

(define process context) include the program counter and stack pointer contents]

– process-state signal mask [when mask is set to 0 (active) the process is inhibited from

running and when reset to 1, the process is allowed to run],

– Signals (messages) dispatch table [process IPC functions],

– OS allocated resources‘ descriptors (for example, file descriptors for open files, device

descriptors for open (accessible) devices, device-buffer addresses and status, socket-

descriptor for open socket), and

– Security restrictions and permissions.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :3

Thread

Thread Features

– A thread consists of executable program (codes), state of which is controlled by OS,

– The state information─ thread-status (running, blocked, or finished), thread structure—

its data, objects and a subset of the process resources, and thread- stack.

– Considered a lightweight process and a process level controlled entity.[Light weight

means its running does not depend on system resources] .

– Process… heavyweight

 Process considered as a heavyweight process and a kernel-levelcontrolled entity.

 Process thus can have codes in secondary memory from which the pages can be

swapped into the physical primary memory during running of the process. [Heavy

weight means its running may depend on system resources]

 May have process structure with the virtual memory map, file descriptors, user–

ID, etc.

 Can have multiple threads, which share the process structure thread

 A process or sub-process within a process that has its own program counter, its

own stack pointer and stack, its own priority parameter for its scheduling by a

thread scheduler

 Its‘ variables that load into the processor registers on context switching.

 Has own signal mask at the kernel. Thread‘s signal mask

 When unmasked lets the thread activate and run.

 When masked, the thread is put into a queue of pending threads.

Multiprocessing OS

 A multiprocessing OS runs more than one processes.

 When a process consists of multiple threads, it is called multithreaded process.

 A thread can be considered as daughter process.

 A thread defines a minimum unit of a multithreaded process that an OS schedules onto

the CPU and allocates other system resources.

Thread parameters

 Each thread has independent parameters ID, priority, program counter, stack pointer,

CPU registers and its present status.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :4

 Thread states─ starting, running, blocked (sleep) and finished

Thread’s stack

 When a function in a thread in OS is called, the calling function state is placed on the

stack top.

 When there is return the calling function takes the state information from the stack top

 A data structure having the information using which the OS controls the thread state.

 Stores in protected memory area of the kernel.

 Consists of the information about the thread state

Task

Task Features

□ An application program can also be said to be a program consisting of the tasks and task

behaviors in various states that are controlled by OS.

□ A task is like a process or thread in an OS.

□ Task─ term used for the process in the RTOSes for the embedded systems.

 For example, VxWorks and µCOS-II are the RTOSes, which use the term task.

Main Features of a ‘Task’ -

(i) ‘Task State’(such as ‘Running, ‘Blocked’ or ‘Finished’).

(ii)Task Structure(ie. Its Data, Objects & Resources).

(iii)Task Control Block(TCB) .

□ A task consists of executable program (codes), state of which is controlled by OS, the

state during running of a task represented by information of process status (running,

blocked, or finished),process-structure—its data, objects and resources, and task control

block (PCB).

□ Runs when it is scheduled to run by the OS (kernel), which gives the control of the CPU

on a task request (system call) or a message.

□ Runs by executing the instructions and the continuous changes of its state takes place as

the program counter (PC) changes.

□ Task is that executing unit of computation, which is controlled by some process at the

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :5

OS scheduling mechanism, which lets it execute on the CPU and by some process at OS

for a resource-management mechanism that lets it use the system memory and other

system-resources such as network, file, display or printer.

□ A task is an independent process.

□ No task can call another task. [It is unlike a C (or C++) function, which can call another

function.]

□ The task─ can send signal (s) or message(s) that can let another task run.

□ The OS can only block a running task and let another task gain access of CPU to run the

servicing codes

Task States

Following are the five states of a task that may have.

(i) Idle state [Not attached or not registered]

(ii) Ready State [Attached or registered]

(iii) Running state

(iv) Blocked (waiting) state

(v) Delayed for a preset period

Idle (created) state

• The task has been created and memory allotted to its structure however, it is not ready and

is not schedulable by kernel.

Ready (Active) State

• The created task is ready and is schedulable by the kernel but not running at present as

another higher priority task is scheduled to run and gets the system resources at this

instance.

Running state

• Executing the codes and getting the system resources at this instance. It will run till it

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :6

needs some IPC (input) or wait for an event or till it gets pre- empted by another higher

priority task than thisone.

Blocked (waiting) state

• Execution of task codes suspends after saving the needed parameters into its Context. It

needs some IPC (input) or it needs to wait for an event or wait for higher priority task to

block to enable running after blocking.

Deleted (finished) state

• Deleted Task─ The created task has memory deallotted to its structure. It frees the

memory. Task has to be re-created.

Task Switching - ‘Task Switching’ is done for ‘Multi -Tasking’ . Each task is allowed to use

the CPU for some time, after which it relinquishes the CPU & this allows the next task to

execute by using the CPU. In effect, bundles of tasks get executed each time.

Context of a Task - There is a TCB (Task Control Block) associated with each task, which

contains all the information of that task. This information is called the 'Context’ of the task.

For eg., In a particular task, there are Register Contents, Memory Pointers etc & this is

meant by the context of the task.

Context Switching –The context of the new task will be different from that of the

stopped/abandoned task. So for a task switching, a ‘Context Switching’ also needed.

Context Saving – All the info of the old task is to be saved & this is 'Context Saving’. Since

context saving is done, there is no difficulty in resuming this task from the point at which it

stopped earlier when it gets the service of the CPU again later.

Context Retrieval –When the CPU takes up a new task, the context changes to that of the

new task i.e. when an old task which was stopped earlier is taken up again, a ‘Context

Retrieval’ occurs. In a multi-tasking system, context switching, context saving &

context retrieval are activities that occur continuously. All these activities are time-

consuming activities & all of them cause memory writes (for context saving) & memory reads

(for context retrieval) as the TCBs are saved in the memory.

MULTI-TASKING

If there are multiple programs that need execution at the same time, we call it a ‘Multi-

programming’ Environment & the system is a ‘Multi – tasking System’. In the case of a single

CPU & multiple tasks will be awaiting service from the CPU. One task should not monopolize

the use of the CPU, so the CPU must be shared between different tasks. To create a feel of

parallelism, each task is getting executed , but not at the same time. This is sort of parallelism is

achieved by ‘Multi - tasking’.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :7

Process/Task Scheduling

A scheduler is a very important unit in an operating system. In general, a scheduler does

the sharing of ‘resource’ between the requesters. The scheduler does not want to give the

resource to just one of the requesting parties alone, because all tasks are equally important. In

a computer system, when a number of tasks arise, the scheduler has the duty of allocating the

services of the CPU to each one of them, based on a set of scheduling conditions. The

conditions depend on the types of applications for which the operating system is used.

There are two main strategies for Scheduling Algorithms –

(1) Non-Preemptive

(2)Pre-Emptive

Non-Pre emptive Scheduling Methods

The various non pre emptive scheduling methods are

1. Co-operative Scheduling - In this scheduling strategy, each task is allowed to execute up

to its finishing state, then only the next task is taken up for the execution. While one task

executes , the others must be willing to wait. This gives the name 'co-operative’ to the

scheduling algorithm. This is a typical case of ‘First Come First Serve Scheduling

(FCFS) or a First In First Out(FIFO)scheme.

2. Shortest Job Next (SJN) –This is also called as the ‘Shortest Job First ’(SJF) algorithm.

Here the tasks are queued in the order of increasing service times & the one task with the

shortest service time gets to execute first. But the problem is that, usually the execution

times of tasks are not known in advance. Then the service time can be estimated by using

their history of each of the tasks.

3. Priority-Based Scheduling - Here, tasks have priorities which are represented in terms

of priority numbers For eg., the numbers 0 to 255 as representing priorities, with 0

representing the highest priority & higher no indicating lower priorities. Systems such as

real-time operating systems use priority-based scheduling methods.

Pre-Emptive Scheduling Methods

Here, when a task is running (using the CPU), it is pushed out from ‘Running’ State to

‘Ready’ State & an another task from the ready queue is taken up the usage of the CPU. So,

we can say that the task has been pre-empted (or removed or replaced).

There are different types of scheduling methods.

1. Round-Robin Scheduling - This method is also called as ‘Time Sharing’ or ‘Time Slice’

system. Here, ‘Time Slices’ are defined. Suppose there are ‘n’ no. of tasks in a system,

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :8

then each of them is allowed to execute for a period equal to the time slice. After this, the

next task gets its turn, but it can also use the CPU only for a time equal to the defined

time slice. Thus all tasks get their chance at least once, in one round.

2. Pre-emptive Priority based Scheduling: - In this method, at any time it should be

ensured that it is the highest priority task in the ready queue that should be running. At

any time, if a task with a higher priority than the one that is currently running enters the

‘Ready Queue’, the current task is pre-empted & the new one is taken up for execution.

3. Pre-emptive SJN / Shortest Remaining Time (SRT) :- Here also the scheduling is in

the order of increasing service times. Thus, tasks with the shortest service times are

executed earlier. If a new task enters the ready queue, its service time is compared with

the remaining service time of the currently executing task. If the new task has a shorter

service time than the remaining running time of the current task, the current task is pre-

empted & the new one is serviced until it completes.

SHARED DATA

Assume that several tasks (or ISRs or functions) share a variable. Let us assume that at an

instant, the value of that variable operates. During the operations on it, only a part of the

operation is completed & another part remains as incomplete. At that moment, let us assume

that there is an interrupt occurred or the OS scheduler transfers the control to other task/ process

(with higher priority).

Now, assume that there is another task (or function) also shares this same variable

mentioned earlier. The value of the variable may differ from the expected value if the earlier

stopped operation had not been completed. This is due to the incomplete operation an occurred

earlier. “Use modifier volatile’ function with a declaration of a variable that returns from the

interrupt. ‘Use re-entrant functions’ with the instructions in that part of a function that needs its

complete execution before it can be interrupted. Put a shared variable in a circular queue.

Disable the interrupts before a critical section starts executing & enable the interrupts on its

completion. Lock the OS scheduling mechanism before a critical section starts executing & lock

the scheduler at the end of the critical section.

Inter Process Communication (IPC)

Inter process communication (IPC) means that a process (scheduler or task or ISR)

generates some information by setting or resetting a Token or value, or generates an output so that

it lets another process take note or to signal to OS for starting a process or use it under the control

of an OS.

Inter process communication functions provide answer to these questions. IPCs in a

multi-process system are used:

I. To interrupt present process for an interrupt service by another process,

2. To notify occurrence of an event to another process waiting for the event.

3. To set or reset a signal, token, or flag or generate message from the certain sets of

computations finishing on one task, and to let the other tasks take note of signal or get the

message.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :9

4. To generate information about certain sets of computations finishing on one process, to

let the other process wait for finishing those computations and when the computations finish

then take note of the information and let others generate information.

5. To generate some information in a process (scheduler, task or ISR) or value or generate a

message in output so that it lets another process take note or use it through the kernel.

OSs provides the software programmer the following IPC functions, which can he used.

I. Signals

2. Semaphores as taken or counting Semaphores for the inter task communication between

tasks sharing a common buffer or operations

3, Message Passing, Queues and mailboxes

4. Pipes and socket

5. Remote procedure calls (RPCs) for distributed processes,

Signals

Features:

– One way for inter process communication is to use an OS function signal (), The OS itself

can issue an interrupt signal similar to the interrupts provided by different external/ internal

hardware sources.

– It is provided in Unix, Linux and several RTOSs.

– Unix and Linux OSs use signals profusely and have thirty-one different types of Signals for
the various events.

– Unless masked by a signal mask, the signal allows the execution of the signal handling

function and allows the handler to run just as a hardware interrupt allows the execution of

an ISR.

– When a signal is sent from a process, OS interrupts the process execution and calls the

function for signal handling. On return from the signal handler, the process continues as

before.

– Signal provides the shortest communication.

The following are the signal related IPC functions

1. signal () :- The OS function signal () enables the OS to run a particular ‘Task’ (or a

process) as per the integer no. ‘n’ given in the argument of the signal function called.

For eg., the instruction ‘signal (8)’ issued by the OS when an illegal mathematical

operation is attempted by a user program.

2. SigHandler () :- This function is used to create a signal handler corresponding to a signal

identified by the signal number and define a pointer to signal context. The signal context

saves the registers on signal. The ‘Signal Handler’ runs in a way similar to a ‘Highest

Priority ISR’

o Similarly, a ‘handler task’ runs for a signal provided that the signal is not masked. When

the signal is sent from a process, OS interrupts the process execution & calls the function

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :10

for signal handling. When there is return from the signaled task (or process), the process
which sent the signal, runs the return codes similar to that happens while returning from an

ISR. On return from the signal handler, the process continues as before

3. Connect ():- This function is used to connect an interrupt vector to a signal number, with

signaled handler function and signal handler arguments. The interrupt vector provides the

program counter value for the signal handler function address.

4. .Mask ():- This function is used to mask the signal

5. Unmask ():- This function is used to unmask the signal

6. Ignore () :- This function is used to ignore the signal

Signal-Dispatch Table

■ The OS maintains a ‘Signal-Dispatch Table’ which sets or resets a flag corresponding each

signal number ‘n’

■ A flag corresponding to ‘n’ sets when the ‘signal (n)’ is issued.

■ This flag will get resets when the service to that signal starts using the corresponding

‘Signal Handler’ task.

Signal-Mask Table

■ The OS maintains a ‘Signal-Mask Table’ which sets or reset a mask bit for each signal

number ‘n’ .

■ The mask sets when a signal is ignored in a situation in which issuing of a signal has

occurred; but the corresponding ‘Signal Handler’ does not get started.

■ The mask resets when the signal is serviced on issuing a signal function & the signal handler

executes.

■ ‘Issuing of a signal’ is equivalent to setting a flag bit at an SFR register in the processor on

the occurrence of a hardware interrupt.

■ If the ‘signal ()’ is not masked by a ‘Signal Mask’, the signal allows the execution of the

‘Signal-Handling Function’ & allows the handler to run just as a hardware interrupt allows

the execution of an ISR.

Application Example:

□ An important application of the signals is to handle exception.

□ An exception is a process that is executed on a specific reported run-time condition.

□ A signal reports an error (called 'Exception') during the running of a task and then lets

the scheduler initiate an error-handling process or ISR, for example, initiate error-login

task.

Advantage of using a Signal

 It takes the shortest possible CPU time.

Drawbacks of using a Signal

 Signal is handled only by a very high priority process (service routine). That may disrupt

the usual schedule and usual priority inheritance mechanism.

 Signal may cause reentrancy problem [process not returning to state identical to the one

before signal handler process executed].

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :11

Semaphore

□ A semaphore is special kind of shared program variable.

□ A semaphore is a kernel object that one or more tasks can acquire or release for the

purpose of synchronization or mutual exclusion.

□ Mutual exclusion is a provision by which only one task at a time can access a shared

resource (port, memory block, etc.)

□ The value of a semaphore is a non-negative integer.

□ If the integer data is only allowed to take the values 0 and 1 then the semaphore is

referred to as a binary semaphore.

□ Binary semaphore allows only one process at a time to access the shared resource.

□ If the integer data is allowed to take any non-negative value then the semaphore is

referred to as a General Semaphore or Counting Semaphore.

□ Counting Semaphore allows N > 1 processes to access the resource simultaneously.

Instead of having states empty and full, it uses a counter S. The counter is initialized to

N, with S = 0 corresponding to the full state.

□ It is that part of the program (or code) where the ‘Shared Memory/ ‘Shared Variable/

‘Shared Data’ / ‘Shared Device’ is accessed

□ OS provides the semaphore IPC functions for creating, releasing and taking of the

semaphore

Semaphore functions:

The following are the functions, which are generally provided in an OS, for example

µCOS-II for the semaphores.

I.OSSemCreate. a semaphore function to create the semaphore in an event control block

(ECB). Initialize it with an initial value.

2. OSSemPost:-. a function which sends the semaphore notification to ECB and its value

increments on event occurrence (used in ISR, as well as tasks).

3. OSSemPend. a function, which waits the semaphore from an event, and its value decrements

on taking note of that event occurrence (used in tasks not in ISRs)

4, OSSemAccept:- a function. which reads and returns the present semaphore value and if it

shows occurrence of an event (by non-zero value) then it takes note of that and decrements that

value (no wait; used in ISRs as well as tacks).

5. OSSemOuery:- a function, which queries the semaphore for an event occurrence or non-

occurrence by reading its value and returns the present semaphore value, and returns pointer to

the data structure

6. OSSemData. The semaphore value does not decrease. The OSSemData points to the present

value and table of the tasks waiting for the semaphore used in tasks.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :12

Semaphore as a resource key and for critical sections having shared for critical sections

having shared resource (s):

□ Shared Resources like shared memory buffer are to be used only by one task (process or
thread) at an instance.

□ OS Functions provide for the use of a semaphore resource key for running of the codes

in critical section.

□ Let a task A, when getting access to a resource/critical section notifies to the OS to have

taken the semaphore (take notice)That is, an OS function OSSemPend() runs to notify.

The OS returns the semaphore as taken (accepted) by decrementing the semaphore from

1 to 0.

□ Now the task A accesses the resource.

□ The task A, after completing the access to a resource/critical section it notifies to the OS

to have posted that semaphore (post notice). That is an OS function OSSemPost() runs to

notify. The OS returns the semaphore as released by incrementing the semaphore from 0

to 1.

□ Figure below shows the use of semaphore between A and B. It shows the five sequential

actions at five different times.

Mutex Semaphore for use as resource key:

□ Mutex means mutually exclusive key.

□ Mutex is a binary semaphore usable for protecting use of resource by other task section

at an instance

□ Let the semaphore sm has an initial value = 1

□ When the semaphore is taken by a task the semaphore sm decrements from 1 to 0 and

the waiting task codes starts.

□ Assume that the sm increments from 0 to 1 for signalling or notifying end of use of the

semaphore that section of codes in the task.

□ When sm = 0 ─ assumed that it has been taken (or accepted) and other task code section

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :13

has not taken it yet and using the resource

□ When sm = 1─ assumed that it has been released (or sent or posted) and other task code

section can now take the key and use the resource.

P and V semaphores

□ An efficient synchronization mechanism

□ P and V semaphores represent by integers in place of binary or unsigned integers.

□ The semaphore, apart from initialization, is accessed only through two standard atomic

operations - P and V.

□ P semaphore function signals that the task requires a resource and if not available waits

for it.

□ V semaphore function signals which the task passes to the OS that the resource is now

free for the other users.

Message Queues

□ A message queue is an inter process communication mechanism which uses an n byte

memory block as queue.

□ The message pointers post into a queue by the tasks either at the back as ina queue or at

the front as in a stack.

□ Every OS provides message queue IPC functions.

Features:

1. OS provides for inserting and deleting the message-pointers or messages.

2. Each queue for a message need initialization (creation) before using the functions in the

scheduler for the message queue

3. There may be a provision for multiple queues for the multiple types or destinations of

messages. Each queue may have an ID.

4. Each queue either has a user definable size (upper limit for number of bytes) or a fixed

pre-defined size assigned by the scheduler.

5. When an RTOS call is to insert into the queue, the bytes are as per the pointed number

of bytes. For example, for an integer or float variable as a pointer, there will be four

bytes inserted per call. If the pointer is for an array of 8 integers, then 32 bytes will be

inserted into the queue.

6. When a queue becomes full, there may be a need for error handling and user codes for

blocking the task(s). There may not be self-blocking.

Queue IPC functions

□ Figure (a) shows the memory blocks at OS for inserting deleting and other functions.

□ Figure (b) shows the functions for the queue in the OS.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :14

□ Figure (c) shows a queue message block with the messages or message pointers.

□ Two pointers *QHEAD and *QTAIL are for queue head and tail memory locations

Figure (a) Queue handling by tasks Figure (b) Queue Functions

Figure (c) Queue message block

OSQCreate

□ This function is used to create a queue and initialize the queue.

OSQPost

□ This function is used to post a message to the message block as per the queue tail
pointer, *QTAIL.

OSQPend

□ This function is used to wait for a queue message at the queue and reads and deletes that

when received.

OSQAccept

□ This function is used to delete the present queue head after checking its presence yes or

no and after the deletion the queue head pointer increments.

OSQFlush

□ This function is used to deletes messages from queue head to tail, after the flush the
queue head and tail points to QTop, pointer to start of the queue.

OSQQuery

□ This function is used to query the queue message-block when read and but the message

is not deleted. The function returns pointer to the message queue

*QHEAD if there are the messages in the queue or else NULL. It return a pointer to data

structure of the queue data structure which has *QHEAD, number of queued messages,

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :15

size of the queue and. table of tasks waiting for the messages from the queue.

OSQPostFront

□ This function is used to send a message as per the queue front pointer, *QHEAD. Use of

this function is made in the following situations. A message is urgent or is of higher

priority than all the previously posted message into the queue.

Mailbox

`Mailbox’ is an indirect way of sending messages. In an OS scenario, it is like a mailbox

maintained by the OS ie. The OS manages the mailbox which is common to the whole system.

An OS provides the IPC functions such as ‘Create’, ‘Post’, ‘Pend’, ‘Accept’ & ‘Query’ for

using the mailbox

Features

□ Mailbox (for message) is an IPC through a message-block at an OS that can be used only

by a single destined task.

□ The source (mail sender) is the task that sends the message pointer to a created mailbox.

□ OS provides for inserting and deleting message into the mailbox message-pointer.

□ Each mailbox for a message need initialization (creation) before using the functions in

the scheduler for the message queue and message pointer pointing to Null.

□ There may be a provision for multiple mailboxes for the multiple types or destinations of

messages.

□ Each mailbox has an ID.

□ Each mailbox usually has one message pointer only, which can point to message.

Types:

□ There are three types of mailboxes as given below.

□ One type is only one message per mailbox is available.

□ Another type is mailbox with provision for multiple messages or message pointers.

□ Third one is OS can provide multiple mailbox messages with each message having a

priority parameter. The read (deletion) can then only be on priority basis in case mailbox

has multiple messages.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :16

Mailbox Functions

1. OSMBoxCreate:- creates a box and initializes the mailbox contents with a NULL

pointer.

2. OSMBoxPost :- sends (writes) a message to the box.

3. OSMBoxWait (pend):- waits for a mailbox message, which is read when received.

4.OSMBoxAccept:- reads the current message pointer after checking the presence yes

or no (no wait). Deletes the mailbox when read.

5.OSMeciRQuery queries the mailbox when mad and not needed later.

Pipes

– A pipe is a ‘data structure’ acting as a ‘FIFO Buffer’ into which writing from one end &

reading from the other end is possible.

– Pipe is a device used for the inter process communication.

– A message-pipe is a device for inserting (writing) and deleting (reading) from that

between two given inter-connected tasks or two sets of tasks.

– Writing and reading from a pipe is like using a C command fwrite with a file name to

write into a named file, and C command fread with a file name to read into a named file.

– The total no. of messages limit & max. size per message can also be provided when

creating a pipe.

– Pipe is a ‘uni-directional’ message transfer mechanism.

– If bi-directional data transfer is needed between two tasks, two pipes are needed

Write and read using Pipe

 One task using the function fwrite in a set of tasks can write to a pipe at the back

pointer address, *pBACK.

 One task using the function fread in a set of tasks can read (delete) from a pipe at

the front pointer address, *pFRONT.

 In a pipe there may be no fixed number of bytes per message but there is end

pointer.

 A pipe can therefore be limited and have a variable number of bytes per message

between the initial and final pointers.

 Pipe is unidirectional. One thread or task inserts into it and other one deletes from it.

Pipe Functions

 Figure (a) shows the write and read the pipe using device drivers.

 Figure (b) shows the functions for the pipe in the OS.

 Figure (c) shows a pipe messages in the message buffer

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :17

Figure (a) Pipe handling by tasks Figure (b) Pipe Functions

Figure (c) Pipe message block

The OS functions for pipe are the following:

5 pipeDevCreate:- for creating a device.,which functions as pipe.

6 open ():- for opening the device to enable its use from beginning of its allocated buffer. its

use is with options and restrictions (or permissions) defined at the time of opening.

7 connect ():-for connecting a thread or task inserting bytes to the thread or task deleting bytes
from the pipe.

8 write () function for inserting (writing) from the bottom of the empty memory space in the

buffer allotted to it

9 read () function for deleting (reading) from the pipe from the bottom of the unread memory

spaces in the buffer filled after writing into the pipe.

10 close () for closing the device to enable its use from beginning of its allocated buffer only
after opening it again.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :18

Sockets

□ Provides a device like mechanism for bi-direction communication.

Need for Sockets for the Inter Process Communication

– A pipe could be used for inserting the byte steam by a process and deleting the bytes from the

stream by another process.

– However, for example, we need that the card information to be transferred from a process A

as byte stream to the host machine process B and the B sends messages as byte stream to the
A

– There is need for bi-directional communication between A and B.

– We need that the A and B ID or address information when communicating must also be

specified either for the destination alone or for the source and destination both. [The

messages in a letter are sent along with address specification.]

– We need to use a protocol for communication

– A protocol, for example, provides along with the byte stream information of the address or

port of the destination or addresses or ports of source and destination both or the protocol

may provide for the addresses and ports of source and destination in case of the remote
processes.

– For example, UDP (user datagram protocol) is used as connectionless protocol.

– UDP header contains source port (optional) and destination port numbers, length of the

datagram and checksum.

– Port means a process or task for specific application.

– Port number specifies the process.

– Datagram means a data, which is independent need not in sequence with the previously sent
data.

– Checksum is sum of the bytes to enable the checking of the erroneous data transfer.

– TCP (transport control protocol) is used as connection oriented protocol.

Features:

– Socket Provides for a bi-directional pipe like device, which also use a protocol between
source and destination processes for transferring the bytes.

– Provides for establishing and closing a connection between source and destination processes
using a protocol for transferring the bytes.

– May provide for listening from multiple sources or multicasting tomultiple destinations.

– Two tasks at two distinct places or locally interconnect through the sockets.

– Multiple tasks at multiple distinct places interconnect through the sockets to a socket at a
server process.

– The client and server sockets can run on same CPU or at distant CPUs on the Internet.

– Sockets can be using a different domain. For example, a socket domain can be TCP

(transport control protocol) , another socket domain may be UDP(transport control

protocol), the card and host example socket domain is different.

– Two processes (or sections of a task) at two sets of ports interconnect (perform inter process
communication) through a socket at each.

– A socket stream between two specified sections (ports)─at the specified sets (addresses) sent
with a port-specific protocol.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :19

– Each socket ─process address (similar to a network or IP address) and section (similar to a

port) specification. The sections (or ports or tasks) and sets of processes (addresses) may be

on the same computer or on a network.

– There has to be a specific protocol in which the messages at the socket interconnect between

(i, j) and (m, n). [i and m are process addresses, and j and n are port or section specifications]

– A pipe does not have protocol based inter-processor communication, while socket provides

that.

– A socket can be a client-server socket. Client Socket and server socket functions are

different.

– A socket can be a peer-to-peer socket IPC. At source and destination sockets have similar
functions.

Socket Functions

– Figure (a) shows the write by a server task and read by a client taskusing device drivers.

– Figure (b) shows the functions for the socket for both server and client in the OS.

– Figure (c) shows byte stream at socket device.

Figure (a) Socket handling by tasks

Figure (b) Socket Functions for both server
and client.

Figure (c) Socket message stream

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :20

The OS functions for socket in Unix are as following.

I. The socket () :- in place of open () in case of pipe gives a socket descriptor sfd. The socket (

) enables its use from beginning of its allocated buffer at the socket address its use with option

and restrictions or permissions defined at the time of opening. A socket can be a stream.

SUCK_STREAM or UDP datagram SOCK_DGRAM.

2. The unlink () before the bind ().

3. The bind () for binding a thread or task inserting bytes into the socket to the thread or task

and deleting bytes from the socket. bind () the socket descriptor to an address in the Unix

domain, bind (sfd, (struct sockaddr *) &local, len); where len is string length. sockaddr is a

data structure with a record of I6-bit unsigned num and a path for the file and a data structure

struct sockaddr_un (unsigned short num; char path(108)

4. The listen (sfd, 16) function for listening 16 queued connections from the client socket.

5. The accept () accepts the client connection and gives a second socket descriptor.

6. The recv O function for deleting (reading) and receiving from the socket from the bottom of

unread memory spaces in buffer. The buffer has messages after writing into the socket.

7. The send () function for inserting (writing) and sending from the socket from the bottom of

the memory spaces in the buffer filled after writing into the socket.

8. The close () for closing the device to enable its use from beginning of its allocated buffer

only after opening it again.

RPC (remote procedure call)

□ A method used for connecting two remotely placed functions by first using a protocol
for connecting the processes. It is used in the cases of distributed tasks.

□ The RTOS can provide for the use of RPCs. These permits distributed environment for

the embedded systems.

□ The OS IPC function allows a function or method to run at another address space of

shared network or other remote computer.

□ The client makes the call to the function that is local or remote and the server response is

either remote or local in the call.

□ Both systems work in the peer-to-peer communication mode. Each system in peer- to-
peer mode can make an RPC.

□ An RPC permits remote invocation of the processes in the distributed systems.

□ The RPC provides the inter task communication when a task is at system1 and another

task is at system 2.

□ Figure below shows the initialized virtual sockets between the client set of tasks and a

server set of tasks at RTOS.

Terms involved in RPC

■ Client - A ‘process’, such as a program or task that requests a service provided by

another program.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 5 Page No :21

■ Server - A ‘process’, such as a program or task, that responds to requests from a client

■ Endpoint - The ‘name’, ‘port’ or ‘group of ports’ on a host system that is monitored

by a server program for incoming client requests .

MODULE 6

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 6 Page No :1

Syllabus

Subject : EC 308 EMBEDDED SYSTEMS

Notes – Module 6

Real time operating systems - Services- Goals – Structures - Kernel - Process Management –

Memory Management – Device Management – File System Organization. Micro C/OS-II RTOS

- System Level Functions – Task Service Functions – Memory Allocation Related Functions –

Semaphore Related Functions. Study of other popular Real Time Operating Systems.

OPERATING SYSTEMS (OS) - INTRODUCTION

 An Operating System is a collection of programs that provides an interface between

application programs and the computer system (hardware).

 Its primary function is to provide application programmers with an abstraction of the

system resources, such as memory, input-output and processor, which enhances the

convenience, efficiency and correctness of their use.

 These programs or functions within the OS provide various kinds of services to the

application programs. The application programs, in turn, call these programs to avail of

such services. Thus the application programs can view the computer resources as abstract

entities.

 In real time systems, most often, such programs cooperate with each other, by exchanging

data and synchronizing each other’s execution, to achieve the overall functionality and

performance of the system.

Types of Operating Systems

1) Stand-Alone Operating System

It is a complete operating system that works on a desktop or notebook computer.

Examples of stand-alone operating systems are:

DOS, Windows 2000 Professional, Mac OS X

2) Network Operating System

It is an operating system that provides extensive support for computer networks. A

network operating system typically resides on a server. Examples of a network

operating system are:

Windows 2000 Server, Unix, Linux, Solaris

3) Embedded Operating System

You can find this operating system on handheld computers and small devices, it

resides on a ROM chip. Examples of embedded operating systems are:

• Windows CE, Pocket PC 2002, Palm OS

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 6 Page No :2

The above classification is based on the computing hardware environment towards

which the OS is targeted. All three types can be either of a real-time or a non-real-time type.

For example, VxWorks is an RTOS of the first category, RT-Linux and ARTS are of the

second category and Windows CE of the third category.

Real-Time Operating Systems

□ A Real-Time OS (RTOS) is an OS with special features that make it suitable for building

real-time computing applications also referred to as Real-Time Systems (RTS).

□ An RTS is a (computing) system where correctness of computing depends not only on

the correctness of the logical result of the computation, but also on the result delivery

time.

□ An RTS is expected to respond in a timely, predictable way to unpredictable external

stimuli.

TYPES OF RTOS

There are two types of Real-Time Operating Systems.

Hard Real-Time Systems - Hard real-time means strict adherence to each task schedule. In

hard real-time systems, secondary storage is limited or missing with data stored in ROM.

Example: Air traffic control, Nuclear power plant control etc.

Soft Real-Time Systems - Soft Real-Time means that only the precedents and sequence for

the task operations are defined. Soft real-time systems have limited utility than hard real-time

systems. Example: Telecom, Networks, Web Services, etc.

Multitasking

A multitasking environment allows applications to be constructed as a set of independent tasks,

each with a separate thread of execution and its own set of system resources. The inter-task

communication facilities allow these tasks to synchronize and coordinate their activity.

Multitasking provides the fundamental mechanism for an application to control and react to

multiple, discrete real-world events and is therefore essential for many real-time applications.

The following are important requirements that an OS must meet to be considered an

RTOS in the contemporary sense.

1. The OS must support priority of tasks and threads

2. A system of priority inheritance must exist. Priority inheritance is a mechanism to ensure

that lower priority tasks cannot obstruct the execution of higher priority tasks.

3. The OS must support various types of thread/task synchronization mechanisms.

4. For predictable response:

a) The time for every system function call to execute should be predictable and

independent of the number of objects in the system.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 6 Page No :3

b) Non pre-emptible portions of kernel functions necessary for inter process

synchronization and communication are highly optimized, short and

deterministic.

c) Non-pre-emptible portions of the interrupt handler routines are kept small and

deterministic

d) Interrupt handlers are scheduled and executed at appropriate priority

e) The maximum time during which interrupts are masked by the OS and by device

drivers must be known.

f) The maximum time that device drivers use to process an interrupt, and specific

IRQ information relating to those device drivers must be known.

g) The interrupt latency (the time from interrupt to task run) must be predictable

and compatible with application requirements.

5. For fast response:

a) Run-time overhead is decreased by reducing the unnecessary context switch.

b) Important timings such as context switch time, interrupt latency, semaphore

get/release latency must be minimum

REAL TIME - A real time is the time which continuously increments at regular intervals

after the start of the system and time for all the activities at difference instances take that time

as a reference in the system.

** REAL TIME OPERATING SYSTEM - A real time operating system (RTOS) is

multitasking operation system for the applications with hard or soft real time

constraints.

Real-time constraint means constraint on occurrence of an event and system expected

response and latency to the event.

**CHARACTERISTICS OF RTOS

As like normal operating system, RTOS can have following important characteristics.

1. Deterministic - Operations are performed at a fixed, predetermined times or within

predetermined time intervals.

2. Responsiveness - If interrupt occur, then how long it takes the operating system to service

interrupt. It includes amount of time to begin execution of the interrupt.

3. Response Time requirements are critical for real-time systems because such systems must

meet timing requirements imposed by individuals, devices and data flows external to the

system.

4. Reliability - Real time systems are performed and controlled all the events in real-time.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 6 Page No :4

So loss of performance may cause major damage and even loss of life. Reliability is the

most important characteristics of RTOS.

5. User Control – it is important to allow the user control over task priority.

The OS/ RTOS goals are :

 Perfection

 Correctness

 Portability

 Inter-operability

 Providing a common set of interfaces for the system

 Orderly access & control when managing the processes

The RTOS goals are correctness & perfection, to achieve the following

(1) Facilitating easy sharing of resources as per schedule & allocations - Resources mean

Processor, Memory, I/Os, Devices, Pipes, Sockets, System Timer, Keyboard, Displays,

Printer & other such resources which processes (tasks or threads) request from the OS .No

processing task (or thread) uses any resource until it has been allocated by the OS at a

given instance .

(2) Facilitating easy implementation of the application software program with the given

system hardware - An application programmer can use the OS functions & processes that are

provided in the OS.

(3) Optimally scheduling the processes/ tasks on the CPU - OS should provide appropriate

‘Context-Switching & ‘Interrupt-Servicing’ mechanisms.

(4) Providing the Management of the Processes, Tasks, Threads, Memory, IPCs, Devices,

I/Os & other OS functions - Management means ‘Creation’, ‘Resource Allocation’,

‘Resource Freeing’, ‘Scheduling (or Synchronizing)’ & ‘Deletion.’

(5) Providing the Management & Easy Interfacing of Files, I/Os, Networking & Network

Protocols .

(6) Providing ‘Portability of Application’ on different hardware configurations .

(7) Providing ‘Inter-Operability of the Application’ on different networks .

(8) Providing a ‘common set of interfaces’ that integrates various devices & applications

through the standard & open systems .

(9) Easy use of the interfacing functions, GUIs & APIs

(10) Maximizing the system performance to let different processes (tasks or threads) share

the resources most efficiently- OS provides protection & security.

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 6 Page No :5

STRUCTURE

A system can be assumed to have following layered structure

1. Application Software : - Executes as per the applications run on the given system

hardware using the interfaces and the system software

2. Application Programming Interface (API) :- Provides the interface (for inputs and

outputs) between the application software and system software so that it is able to run on

the processor using the given system-software

3. System software:- This layer gives the system software services other than those

provided by the OS service function interface like the device drivers

4. OS interface – interface between application software and OS.

5. OS – kernel supervisory mode services, file management

6. Hardware—OS Interface:-- Interfaces to let the functions be executed on the given

hardware (processor. memory, ports and devices) of the system

7. Hardware :-. Processor(s), memories, buses, interfacing circuits, ports, physical devices,

timers, and buses for devices networking.

When using an OS, the processor in the system runs in two modes

The two mode are: User and Supervisory Mode Structure.

• User mode – user process is permitted to run and use only a subset of functions and

instructions in OS. In ‘User Mode’, the use of hardware resources including memory is

not permitted without making a ‘System Call’. (A ‘System Call’ is a call by an OS

functions & The OS calls the resources by system call) . The ‘user mode function call’ is

not permitted to read & write into the protected memory allotted to the OS functions,

data, stack etc .This protected memory space is also called ‘Kernel Space’. So, ‘user

function call’ is not like a ‘system call’. Hence execution of ‘user functions calls’ is

slower than the execution of the ‘OS function calls’ (where the OS function calls run on

system call). This is because of the protected access to memory by the functions running

in user-space

• Supervisory mode – OS runs the privileged functions and instructions in the protected

mode and the OS only accesses the hardware resources and the protected area memory.

In the supervisory mode, the kernel codes run .So, the ‘Kernel-Mode’ functions’ execute

faster than the ‘User Mode’ functions.

After completing the supervisory functions in the OS, the ‘system context’ switches back to the

user mode.

RTOS’ Vs ‘Non-Real-Time OS’

An RTOS permits running of the processes, tasks & threads in the ‘Supervisory Mode(or

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 6 Page No :6

kernel mode)

- Therefore, the threads execute fast

- This improves the system performance.

In non-real-time OS, the threads are executed in the user mode

Then the execution slows down due to checks on the code access to the protected kernel space

KERNEL

It’s the basic structural unit of any OS in which the memory space of the functions, data

and stack are protected from access by any call other than system-call.

It can be defined as a secured unit of an OS that operates in the supervisory mode while

the remaining part and application software operates in the user mode.

The kernel has management functions for processes, resources, ISRs, ISTs, files,

devices and IO subsystems and network subsystems. The memory or device and file

management functions may be outside the kernel in a given OS.

Kernel services in an operating system are -

Process management –

• Creation to deletion – enables creation, activation, running, blocking, resumption,

deactivation and deletion and maintenance of process structure at PCB(Process control

box)

• Processing resource request :- by process made either by making calls that are known as

system calls or by sending messages

• Scheduling – enables scheduling of various process on various terms like priority based

scheduling.

• IPC [inter process communication] – processes synchronizing by sending data as

messages from one task to another. The OS effectively manages shared memory access

by using IPC signals . Exceptions are queues, semaphores, pipes and sockets.

• Memory management allocation and de-allocation.:- It restricts the memory access

region for a task. There by dynamic memory allocation

• I/O management. : Character or block I/O management to ensure action such that a

parallel port or serial port obtains access to only one task at a time

• Process structure – enables maintenance of process structure at PCB.

• File management – provides management of the creation, deletion, Read () and write () to

the files on the secondary memory disk. A file in the embedded system can be in RAM,

EC308 Embedded systems NCERC,PAMPADY

Dept of ECE Module 6 Page No :7

where the operations are done in RAM memory in a way identical to file on disk.

• Device management – A physical device management is such that it is accessible to one

task or process only at an instant. Device manager components are: (1) device drivers and

device ISRs (device interrupt handlers): (ii) resource managers for the devices. Besides

physical devices the management of virtual device like pipe or socket is also provided.

Virtual devices emulate a hardware device and the virtual device driver send signals similar

to the ISR calls by the physical device.

PROCESS MANAGEMENT

At restart of processor in a computer system, an OS is initialized first (boot), and then a

process, which can be called initial process, is created (initialization of OS means enabling the

use of OS function, which includes to create the processes).

Process management also means ‘Task Management’ & ‘Thread Management’ .

Following are the ‘Process Management Functions’ of the OS kernel.

1) Process Creation to Deletion

2) Process Structure Maintenance

3) Processing the ‘Resource Requests’

4) Process Scheduling

5) Inter-Process Communication (IPC)

1. Process Creation –

 After reset of the processor in a computer system, an OS is ‘initialized’ first & Then a

process, which can be called as ‘Initial Process’ is created. (Here, ‘initialization of OS’

means enabling the use of ‘OS Functions’, which includes the function to create the

processes).

 Then the OS is ‘started’ & that runs an initial process (‘Starting the OS’ means calling the

‘OS Functions’, which includes the call to all the created processes before the OS start but

after the OS initialization).

 The initial process creates subsequent processes

 So, the processes can be created hierarchically

 OS schedules the processes & provides for ‘Context Switching’ between the processes &

threads.

 Creation of a process means specifying the resources for the process such as

- Address Spaces (or Memory Blocks) for the created process

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :8

- Stack Memory Area

- Data for the process

- Placing the process initial info. at a Process Control Block (PCB)

 The ‘Process Manager’ allocates a PCB (or TCB- Task Control Block) when it creates the

process & later, manages that PCB.

A PCB or TCB describes the following.

1) Context: Processor status word, PC, SP and other CPU registers at the instant of the last

instruction run executed when the process was left and the processor switched to another

process.

2) Process stack pointer.

3) Current state: Is it created, activated or spawned? Is it running? Is it blocked? (spawn

means create activate).

4) Addresses that are allocated and that are presently in use.

5) Pointer for the parent process in case there exists a hierarchy of the processes.

6) Pointer to a list of daughter processes (processes lower in the hierarchy).

7) Pointer to a list of resources, which are usable (consumed) only once. For example, input

data, memory buffer or pipe, mailbox message, semaphore (there may be producers and

consumers of these resources).

8) Pointer to a list of resource type usable more than once: A resource type example is a

memory block. Another example is an I/O port. Each resource type will have a count of these

types. For example, the number of memory blocks or number of I/O ports

9) Pointer to queue of messages. It is considered as a special case of resources that are usable

once. It is because messages from the OS also queue up to be controlled by a process.

10) Pointer to access permissions descriptor for sharing a set of resources globally, and with

another process.

11) ID by which identification is made by the process manager.

2. Management of the Created Processes

Process Manager’ is a unit of the OS that is the entity responsible for controlling a

process execution.

A process manager

o Creates the processes.

 o Allocates to each a PCB.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :9

o Manages access to resources .

o Facilitates switching from one process state to another.

 Process manager is a unit of the OS that is responsible for controlling a process execution.

 Process management enables process creation, activation, running, blocking, resumption,

deactivation and deletion.

 A process manager facilitates the following.

o Each process of a multiple process (or multitasking or multithreading) system is executed

such that a process state can switch from one to another.

o A process does the following sequential execution of the states: 'created', 'ready or activate',

'spawn' (means create and activate), 'running’, `blocked' or 'suspended', 'resumed' and

'finished' and 'ready' after 'finish' (when there is an infinite loop in a process) and finally

'deleted'.

o Blocking and resuming can take place several times in a long process. The different OSs

make the provisions for possible states between creation and deletion differently.

o The process manager executes a process request for a resource or OS service and then grants

that request to let the processes share the resources. For example, an LCD display is a shared

resource. The LCD display can be used only by one task or thread at an instance.

3. ‘Process Request’ for Resource - The process manager executes a process request for a

resource or OS service & then grants that request to let the processes share the resources

For eg., an LCD display is a shared resource .The LCD display can be used only by one task or

thread at an instance.

The ‘Request for a Resource’ is the OS Service by a Running Process. A ‘running

process’ make requests by two methods:

(1) Message

(2) System Call

4. Process Scheduling

The process manager

a) Manages the ‘Processes’ & ‘Resources’ of the given system

b) Makes it feasible for a process to sequentially (or concurrently execute or To ‘block’ a

process when needing a resource or To ‘resume’ when the resource becomes available

c) Implements the logical link to the resource manager for resources manages including

scheduling of processes on the CPU.

d) Allows specific resources sharing between specified processes only.

e) Allocates the resources as per the resource allocation mechanism of the system.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :10

MEMORY MANAGEMENT

When a process is created, the memory manager allocates the memory addresses

(blocks) to it by mapping the process address space. Threads of a process share the memory

space of the process.

 Memory Management after Initial Allocation

 The memory manager of the OS has to be secure, robust and well protected.

 There must be control such that there are no memory leaks and stack overflows.

 Memory leaks mean attempts to write in the memory block not allocated to a process or

data structure.

 Stack overflow means that the stack exceeds the allocated memory block(s) when there is

no provision for additional stack space.

The task consists of several fixed size memory blocks. The fixed size memory

blocks allocation and de-allocation time takes fixed time (deterministic). Therefore, it leads to a

predictable task-performance.

Memory Managing Strategy for a System

I. Fixed blocks allocation - Memory address space is divided into blocks with processes

having small address spaces getting a lesser number of blocks and processes with big

address spaces getting a larger number of blocks.

II. Dynamic blocks allocation - Memory address space is divided into fixed blocks as

above and then later the memory manager later allocates variable size blocs (in units of

say 64 or 256 bytes) dynamically allocated from a free (unused) list of memory blocks

description table at the different computation phases of a process.

III. Dynamic page allocation - Memory has fixed sized blocks called pages and the memory

manager MMU (memory management unit) allocates the pages dynamically with a

page descriptor table.

IV. Dynamic data memory allocation - The manager allocates memory dynamically to

different data structures like the nodes of a list, queues and stacks.

V. Dynamic address relocation - The manager dynamically allocates the addresses initially

bound to the relative addresses. It adds the relative address to address with relocation

register. The memory manager now dynamically changes only the contents of

relocation register. It also takes into account a limit-defining register so that the

relocated addresses are within the limit of available addresses. This is also called run-

time dynamic address binding.

VI. Multiprocessor memory allocation - The memory adopts an allocation strategy either

shared with tight coupling between two or more processors or shared with loose

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :11

coupling or multi segmented allocations.

VII. Memory protection to OS functions - Memory protection to the OS functions means

that the system call (call to an OS function) and function call in user space are distinct.

The OS function code, data and stack are in the protected memory area. It means that

when a user function call attempts to write or read in the exclusive memory space

allocated to the OS functions, it is blocked and the system generates an error. The

memory of kernel functions is distinct and can be addressed only by the systems calls.

The memory space is called kernel space.

VIII. Memory protection among the tasks - Memory protection to the tasks means that a task

function call cannot attempt to write or read in the exclusive area of memory space

allocated to another task. The protection increases the memory requirement for each

task and also the execution time of the code of the task.

The memory manager manages the following:

- Use of memory addresses space by a process.

- Specific mechanisms to share the memory space.

- Specific mechanisms to restrict sharing of a given memory space and

- Optimization of the access periods of a memory by using an hierarchy of memories (caches.

primary and external secondary magnetic and optical memories).

Remember that the access periods are in the following increasing order: caches,

primary and external secondary magnetic and then optical. The memory manager allocates

memory to the processes and manages it with appropriate protection. There may be static and

dynamic allocations of memory. The manager optimizes the memory needs and memory

utilization. An RTOS may disable the support to the dynamic block allocation. MMU support to

the dynamic page allocation and dynamic binding as this increases the latency of servicing the

tasks and ISRs. An RTOS may or may not support memory protection in order to reduce the

latency and memory needs of the processes.

Memory Allocation

o When a process is created, the OS memory manager allocates the memory addresses

(blocks) to it by mapping the process-address space.

o Threads of a process share the memory space of the process.

o There may be ‘Static’ & ‘Dynamic’ allocations of memory.

Memory Allocation & De-Allocation

o An OS provides for dynamic memory allocation & de-allocation functions

o Dynamic memory allocation is used for creating memory address space for a

‘Messages Queue’ or a buffer some other purpose during execution of a task.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :12

o Dynamic Memory De-Allocation is used for freeing the memory taken up for the

buffer/ queue during execution of the task.

o MMU may support to the ‘Dynamic Page Allocation’

o An RTOS may disable the support to the dynamic block allocation

o This is because dynamic allocation of ‘memory pages’ increases the latency (or

Delay) of servicing the tasks & ISRs.

Memory Management after Initial Allocation

There must be control such that there are no ‘Memory Leaks’ & ‘Stack

Overflows’(Memory leaks mean attempts to write in the memory block not allocated to a

process or data structure) (Stack overflow means that the stack exceeds the allocated memory

blocks when there is no provision for additional stack space.

Memory Manager

 The ‘Memory Manager’ allocates memory to the processes & manages it with

appropriate protection.

 The manager optimizes the memory needs & memory utilization

 The memory manager of the OS has to be ‘Secure, robust & well protected

 The memory manager manages the following:

 Use of memory address space by a process.

 Specific mechanisms to share the memory space,

 Specific mechanisms to restrict sharing of a given memory space

 Optimization of the access periods of a memory by using an hierarchy of memories

(Caches, Primary & External Secondary Magnetic/ Optical Memories).(The memory

access time periods are in the following increasing order: Caches, Primary & External

Secondary Magnetic/ Optical Memories).

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :13

DEVICE MANAGEMENT

A device manager is the software that manages various device drivers available in the

system. An OS device manager provides and executes the modules for managing the devices

and their drivers ISRs.

There are number of device drive ISRs for each device in a system, each driver-function of

a device (e.g. open, close, read) calls a separate ISR. These calls are made by device manager.

The manager coordinates between application process, driver- and device-controller.

A process sends a request to the driver functions by an interrupt using SWI (Software

Interrupt) and the driver provides the actions on calling and executing the ISR.

The device manager polls the requests at the devices and the actions occur as per their

priorities. The device manager manages I/O interrupt (requests) queues.

The device manager creates, appropriate kernel interface and API, and that activates the

control register-specific actions of the device.

An OS device manager provides and executes the modules for managing the devices and

their driver ISRs.

1) It manages the physical as well as virtual devices like the pipes and sockets through a

common strategy.

2) Device management has three standard approaches to three types of device drivers:

(i) programmed I/0s by polling the service need from each device.

(ii) interrupt(s) from the device driver ISR and

(iii) DMA operation used by the devices to access the memory. Most common is the use of

device driver ISRs.

Set of Command functions for Device Management

Create and Open - create is for creating and open is for creating (if not created earlier) and

configuring and initializing the device.

Write - Write into the device buffer or send output from the device and advance the pointer

(cursor).

Read - Read from the device buffer or read input from the device and advance the pointer

(cursor).

Ioctl - Specified device configured for specific functions and given specific parameters.

Close and delete - close is for de-registering the device from the system and delete is for

close (if not closed earlier) and detaching the device.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :14

Function of device manager

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :15

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :16

FILE SYSTEM ORGANIZATION & IMPLEMENTATION

A ‘File’ is a named entity on a memory card, magnetic/optical disc or system memory.

 A file contains the data, characters & text; It may also have a mix of these .Each OS

may have differing abstractions of a file.

 A ‘File’ may be a named entity that is a ‘Structural Record’ on a disk having ‘random

access’ in the system.

 A ‘File’ can be a structural record on a RAM (similar to that in a disk) and it may also

be called ‘RAM disk’.

 A ‘File’ may be an unstructured record of bits or bytes.

 A ‘File’ is a virtual device such as a ‘pipe’ like device for inter-process communication

(IPC).

 A ‘File’ device may be a ‘socket’ like device for inter-process communication (IPC).

File in Embedded Systems

A file in embedded system can be in the RAM(In most cases, embedded systems doesn’t

contain disk type memories).

So, the file operations are done in RAM memory in a way identical to with a file on the

Disk. A file can also be in flash memory like memory card or pen drive.

File Management Functions

It is necessary to organize the files in a systematic way & to have a set of command

functions.

File-management functions provide functions for creation, deletion, read (), write () to

the files.

File systems

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :17

There are two types of file systems.

(1) Block File System - Here an OS application generates records to be saved into the

memory. These are first structured into a suitable format & then translated into blocks (or

block streams).

A ‘File Pointer’ (record) points to a block from the start to the end of the file .

(2) Byte-Stream File System - Here the application generates record streams.These streams

are to be saved into the memory. These are first structured into a suitable format & then

translated into byte streams. A file pointer (byte index) points to a byte from the start index =

0 to ‘N-l’ in a file of N bytes.

File Descriptor

 Just as each process has a processor descriptor (or PCB- process control block), a file

system has a ‘Data Structure’, called ‘File Descriptor’, fd .

 The structure differs from one ‘File Manager’ to another.

 File descriptor, fd, for a file is an integer, which returns on opening a file.

 The, fd, points to the data structure of the file.

 The ‘fd’ is usable till the closing of the file.

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :18

MICRO C/OS-II RTOS (MUCOS)

One of the popular RTOS for an embedded system is µC/OS-II. µC/OS-II is a free ware

for non commercial use

6.9 µC/OS-II System level Functions

A set of system level functions in MUCOS are as follows.

1. Initiating the operating system before starting the use of the RTOS functions.

Function void OSInit (void) is used to initiate the operating system. Its use is compulsory

before calling any OS kernel functions. It returns no parameter.

2. Starting the use of RTOS multitasking functions and running the tasks

Function void OSStart (void) is used to start the initiated operating system and created

tasks. Its use is compulsory for the multitasking OS kernel operations. It returns no parameter.

3. Starling the use of RTOS System clock

Function void OSTicklnit (void) is used to initiate the system clock ticks and interrupts at

regular intervals as per OS_TICKS_PER_SEC predefined during configuring the MUCOS, Its

use is compulsory for the multitasking OS kernel operations when the timer functions are to be

used. It returns or passes no parameter.

4, Sending message to RTOS kernel for taking control at the start of an 1SR

Function void OSIntEnter (void) is used at the start of an ISR, It is for sending a message

to RTOS kernel for taking control, Its use is compulsory to let the multitasking OS kernel,

control the nesting of the ISRs in case of occurrences of multiple interrupts of varying priorities,

It returns no parameter.

5. Sending a message to RTOS kernel for quitting the control at the return from an 1SR

Function void OSIntExit (void) is used just before the return from the running ISR. It is

for sending a message to RTOS kernel for quitting control from the nesting loop, Its use is

compulsory to let the OS kernel quit the ISR from the nested loop of the ISRs. It returns no

parameter.

6. Sending a message to RTOS kernel for taking control at the start of a critical section

Macro-function OS_ENTER_CRITICAL is used at the start of an ISR. It is for sending a

message to RTOS kernel for disabling the interrupts. Its use is compulsory to let the OS kernel

take note of and disable the interrupts of the system. It returns no parameter.

7. Sending a message to RTOS kernel for quitting the control at the return from a critical section

Macro-function OS_EXIT_CRITICAL is used just before the return from the critical section.

It is for sending a message to RTOS kernel for quitting control from the section. Its use is

compulsory to let the OS kernel quit the section and enable the interrupts to the system. It returns

EC308 Embedded systems MESCE Kuttippuram

Dept of ECE Module 6 Page No :19

parameter.

8. Locking OS scheduler : OSSchedlock ()f disables preemption by a higher priority task.

This function, inhibits preemption by higher priority task. but does not inhibit interrupt. If

an interupt occur then locking enables return of OS control to that task, which executes this

function. The control returns to the task after any ISR completers

9. Unlocking OS schedule. OSScheduleunlock() enables preemption by higher priority' task.

enables return of OS control to the high priority cask after the execution of

OSScheduledUnlock. In case of any interrupt occurring after executing OSScheduleunlock

and after the end of the ISR, the higher-priority task. which is ready will execute on return

hum the ISR.

BEYOND THE SYLLABUS

INTERNET OF THINGS

Internet of Things

i

About the Tutorial

IoT (Internet of Things) is an advanced automation and analytics system which exploits

networking, sensing, big data, and artificial intelligence technology to deliver complete systems

for a product or service. These systems allow greater transparency, control, and performance

when applied to any industry or system.

IoT systems have applications across industries through their unique flexibility and ability to be

suitable in any environment. They enhance data collection, automation, operations, and much

more through smart devices and powerful enabling technology.

This tutorial aims to provide you with a thorough introduction to IoT. It introduces the key

concepts of IoT, necessary in using and deploying IoT systems.

Audience

This tutorial targets IT professionals, students, and management professionals who want a solid

grasp of essential IoT concepts. After completing this tutorial, you will achieve intermediate

expertise in IoT and a high level of comfort with IoT concepts and systems.

Prerequisites

This tutorial assumes general knowledge of networking, sensing, databases, programming, and

related technology. It also assumes familiarity with business concepts and marketing.

Copyright & Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.

Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any

contents or a part of contents of this e-book in any manner without written consent of the

publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.

provides no guarantee regarding the accuracy, timeliness or completeness of our website or its

contents including this tutorial. If you discover any errors on our website or in this tutorial,

please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Internet of Things

ii

Table of Contents

About the Tutorial ... i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer .. i

Table of Contents ... ii

1. IOT − OVERVIEW .. 1

IoT − Key Features .. 1

IoT − Advantages .. 1

IoT − Disadvantages ... 2

2. IOT − HARDWARE ... 3

IoT − Sensors .. 3

Wearable Electronics .. 4

Standard Devices .. 5

3. IOT − SOFTWARE .. 6

4. IOT − TECHNOLOGY AND PROTOCOLS ... 7

5. IOT − COMMON USES .. 8

Engineering, Industry, and Infrastructure ... 8

Government and Safety ... 8

Home and Office .. 8

Health and Medicine .. 9

6. IOT − MEDIA, MARKETING, & ADVERTISING ... 10

7. IOT − ENVIRONMENTAL MONITORING ... 12

Internet of Things

iii

8. IOT − MANUFACTURING APPLICATIONS ... 14

9. IOT − ENERGY APPLICATIONS ... 16

10. IOT − HEALTHCARE APPLICATIONS ... 18

11. IOT − BUILDING/HOUSING APPLICATIONS .. 20

12. IOT − TRANSPORTATION APPLICATIONS ... 22

13. IOT − EDUCATION APPLICATIONS ... 24

14. IOT − GOVERNMENT APPLICATIONS .. 26

15. IOT − LAW ENFORCEMENT APPLICATIONS ... 28

16. IOT − CONSUMER APPLICATIONS ... 30

17. IOT − THINGWORX ... 32

18. IOT − CISCO VIRTUALIZED PACKET CORE .. 35

19. IOT − SALESFORCE .. 37

20. IOT − GE PREDIX ... 38

21. IOT − ECLIPSE IOT ... 40

22. IOT − CONTIKI... 42

23. IOT − SECURITY .. 44

24. IOT − IDENTITY PROTECTION .. 46

25. IOT − LIABILITY ... 47

26. IOT − USEFUL RESOURCES .. 49

Internet of Things

1

IoT systems allow users to achieve deeper automation, analysis, and integration within a system.

They improve the reach of these areas and their accuracy. IoT utilizes existing and emerging

technology for sensing, networking, and robotics.

IoT exploits recent advances in software, falling hardware prices, and modern attitudes towards

technology. Its new and advanced elements bring major changes in the delivery of products,

goods, and services; and the social, economic, and political impact of those changes.

IoT − Key Features

The most important features of IoT include artificial intelligence, connectivity, sensors, active

engagement, and small device use. A brief review of these features is given below:

 AI – IoT essentially makes virtually anything “smart”, meaning it enhances every aspect

of life with the power of data collection, artificial intelligence algorithms, and networks.

This can mean something as simple as enhancing your refrigerator and cabinets to detect

when milk and your favorite cereal run low, and to then place an order with your preferred

grocer.

 Connectivity – New enabling technologies for networking, and specifically IoT

networking, mean networks are no longer exclusively tied to major providers. Networks

can exist on a much smaller and cheaper scale while still being practical. IoT creates

these small networks between its system devices.

 Sensors – IoT loses its distinction without sensors. They act as defining instruments

which transform IoT from a standard passive network of devices into an active system

capable of real-world integration.

 Active Engagement – Much of today's interaction with connected technology happens

through passive engagement. IoT introduces a new paradigm for active content, product,

or service engagement.

 Small Devices – Devices, as predicted, have become smaller, cheaper, and more

powerful over time. IoT exploits purpose-built small devices to deliver its precision,

scalability, and versatility.

IoT − Advantages

The advantages of IoT span across every area of lifestyle and business. Here is a list of some of

the advantages that IoT has to offer:

 Improved Customer Engagement – Current analytics suffer from blind-spots and

significant flaws in accuracy; and as noted, engagement remains passive. IoT completely

transforms this to achieve richer and more effective engagement with audiences.

 Technology Optimization – The same technologies and data which improve the

customer experience also improve device use, and aid in more potent improvements to

technology. IoT unlocks a world of critical functional and field data.

1. IoT − Overview

Internet of Things

2

 Reduced Waste – IoT makes areas of improvement clear. Current analytics give us

superficial insight, but IoT provides real-world information leading to more effective

management of resources.

 Enhanced Data Collection – Modern data collection suffers from its limitations and its

design for passive use. IoT breaks it out of those spaces, and places it exactly where

humans really want to go to analyze our world. It allows an accurate picture of everything.

IoT − Disadvantages

Though IoT delivers an impressive set of benefits, it also presents a significant set of challenges.

Here is a list of some its major issues:

 Security – IoT creates an ecosystem of constantly connected devices communicating

over networks. The system offers little control despite any security measures. This leaves

users exposed to various kinds of attackers.

 Privacy – The sophistication of IoT provides substantial personal data in extreme detail

without the user's active participation.

 Complexity – Some find IoT systems complicated in terms of design, deployment, and

maintenance given their use of multiple technologies and a large set of new enabling

technologies.

 Flexibility – Many are concerned about the flexibility of an IoT system to integrate easily

with another. They worry about finding themselves with several conflicting or locked

systems.

 Compliance – IoT, like any other technology in the realm of business, must comply with

regulations. Its complexity makes the issue of compliance seem incredibly challenging

when many consider standard software compliance a battle.

Internet of Things

3

The hardware utilized in IoT systems includes devices for a remote dashboard, devices for

control, servers, a routing or bridge device, and sensors. These devices manage key tasks and

functions such as system activation, action specifications, security, communication, and

detection to support-specific goals and actions.

IoT − Sensors

The most important hardware in IoT might be its sensors. These devices consist of energy

modules, power management modules, RF modules, and sensing modules. RF modules manage

communications through their signal processing, WiFi, ZigBee, Bluetooth, radio transceiver,

duplexer, and BAW.

The sensing module manages sensing through assorted active and passive measurement

devices. Here is a list of some of the measurement devices used in IoT:

Devices

accelerometers temperature sensors

magnetometers proximity sensors

gyroscopes image sensors

acoustic sensors light sensors

pressure sensors gas RFID sensors

humidity sensors micro flow sensors

2. IoT − Hardware

Internet of Things

4

Wearable Electronics

Wearable electronic devices are small devices worn on the head, neck, arms, torso, and feet.

Smartwatches not only help us stay connected, but as a part of an IoT

system, they allow access needed for improved productivity.

Current smart wearable devices include:

 Head – Helmets, glasses

 Neck – Jewelry, collars

 Arm – Watches, wristbands, rings

 Torso – Clothing, backpacks

 Feet – Socks, shoes

Internet of Things

5

Smart glasses help us enjoy more of the media and services we value, and

when part of an IoT system, they allow a new approach to productivity.

Standard Devices

The desktop, tablet, and cellphone remain integral parts of IoT as the command center and

remotes.

 The desktop provides the user with the highest level of control over the system and its

settings.

 The tablet provides access to the key features of the system in a way resembling the

desktop, and also acts as a remote.

 The cellphone allows some essential settings modification and also provides remote

functionality.

Other key connected devices include standard network devices like routers and switches.

Internet of Things

6

IoT software addresses its key areas of networking and action through platforms, embedded

systems, partner systems, and middleware. These individual and master applications are

responsible for data collection, device integration, real-time analytics, and application and

process extension within the IoT network. They exploit integration with critical business systems

(e.g., ordering systems, robotics, scheduling, and more) in the execution of related tasks.

Data Collection

This software manages sensing, measurements, light data filtering, light data security, and

aggregation of data. It uses certain protocols to aid sensors in connecting with real-time,

machine-to-machine networks. Then it collects data from multiple devices and distributes it in

accordance with settings. It also works in reverse by distributing data over devices. The system

eventually transmits all collected data to a central server.

Device Integration

Software supporting integration binds (dependent relationships) all system devices to create the

body of the IoT system. It ensures the necessary cooperation and stable networking between

devices. These applications are the defining software technology of the IoT network because

without them, it is not an IoT system. They manage the various applications, protocols, and

limitations of each device to allow communication.

Real-Time Analytics

These applications take data or input from various devices and convert it into viable actions or

clear patterns for human analysis. They analyze information based on various settings and

designs in order to perform automation-related tasks or provide the data required by industry.

Application and Process Extension

These applications extend the reach of existing systems and software to allow a wider, more

effective system. They integrate predefined devices for specific purposes such as allowing certain

mobile devices or engineering instruments access. It supports improved productivity and more

accurate data collection.

3. IoT − Software

Internet of Things

7

IoT primarily exploits standard protocols and networking technologies. However, the major

enabling technologies and protocols of IoT are RFID, NFC, low-energy Bluetooth, low-energy

wireless, low-energy radio protocols, LTE-A, and WiFi-Direct. These technologies support the

specific networking functionality needed in an IoT system in contrast to a standard uniform

network of common systems.

NFC and RFID

RFID (radio-frequency identification) and NFC (near-field communication) provide simple, low-

energy, and versatile options for identity and access tokens, connection bootstrapping, and

payments.

 RFID technology employs 2-way radio transmitter-receivers to identify and track tags

associated with objects.

 NFC consists of communication protocols for electronic devices, typically a mobile device

and a standard device.

Low-Energy Bluetooth

This technology supports the low-power, long-use need of IoT function while exploiting a

standard technology with native support across systems.

Low-Energy Wireless

This technology replaces the most power hungry aspect of an IoT system. Though sensors and

other elements can power down over long periods, communication links (i.e., wireless) must

remain in listening mode. Low-energy wireless not only reduces consumption, but also extends

the life of the device through less use.

Radio Protocols

ZigBee, Z-Wave, and Thread are radio protocols for creating low-rate private area networks.

These technologies are low-power, but offer high throughput unlike many similar options. This

increases the power of small local device networks without the typical costs.

LTE-A

LTE-A, or LTE Advanced, delivers an important upgrade to LTE technology by increasing not only

its coverage, but also reducing its latency and raising its throughput. It gives IoT a tremendous

power through expanding its range, with its most significant applications being vehicle, UAV,

and similar communication.

WiFi-Direct

WiFi-Direct eliminates the need for an access point. It allows P2P (peer-to-peer) connections

with the speed of WiFi, but with lower latency. WiFi-Direct eliminates an element of a network

that often bogs it down, and it does not compromise on speed or throughput.

4. IoT − Technology and Protocols

Internet of Things

8

IoT has applications across all industries and markets. It spans user groups from those who want

to reduce energy use in their home to large organizations who want to streamline their

operations. It proves not just useful, but nearly critical in many industries as technology

advances and we move towards the advanced automation imagined in the distant future.

Engineering, Industry, and Infrastructure

Applications of IoT in these areas include improving production, marketing, service delivery, and

safety. IoT provides a strong means of monitoring various processes; and real transparency

creates greater visibility for improvement opportunities.

The deep level of control afforded by IoT allows rapid and more action on those opportunities,

which include events like obvious customer needs, nonconforming product, malfunctions in

equipment, problems in the distribution network, and more.

Example

Joan runs a manufacturing facility that makes shields for manufacturing equipment. When

regulations change for the composition and function of the shields, the new appropriate

requirements are automatically programmed in production robotics, and engineers are alerted

about their approval of the changes.

Government and Safety

IoT applied to government and safety allows improved law enforcement, defense, city planning,

and economic management. The technology fills in the current gaps, corrects many current

flaws, and expands the reach of these efforts. For example, IoT can help city planners have a

clearer view of the impact of their design, and governments have a better idea of the local

economy.

Example

Joan lives in a small city. She’s heard about a recent spike in crime in her area, and worries

about coming home late at night.

Local law enforcement has been alerted about the new “hot” zone through system flags, and

they’ve increases their presence. Area monitoring devices have detected suspicious behavior,

and law enforcement has investigated these leads to prevent crimes.

Home and Office

In our daily lives, IoT provides a personalized experience from the home to the office to the

organizations we frequently do business with. This improves our overall satisfaction, enhances

productivity, and improves our health and safety. For example, IoT can help us customize our

office space to optimize our work.

5. IoT − Common Uses

Internet of Things

9

Example

Joan works in advertising. She enters her office, and it recognizes her face. It adjusts the lighting

and temperature to her preference. It turns on her devices and opens applications to her last

working points.

Her office door detected and recognized a colleague visiting her office multiple times before she

arrived. Joan’s system opens this visitor’s messages automatically.

Health and Medicine

IoT pushes us towards our imagined future of medicine which exploits a highly integrated

network of sophisticated medical devices. Today, IoT can dramatically enhance medical research,

devices, care, and emergency care. The integration of all elements provides more accuracy,

more attention to detail, faster reactions to events, and constant improvement while reducing

the typical overhead of medical research and organizations.

Example

Joan is a nurse in an emergency room. A call has come in for a man wounded in an altercation.

The system recognized the patient and pulls his records. On the scene, paramedic equipment

captures critical information automatically sent to the receiving parties at the hospital. The

system analyzes the new data and current records to deliver a guiding solution. The status of

the patient is updated every second in the system during his transport. The system prompts

Joan to approve system actions for medicine distribution and medical equipment preparation.

Internet of Things

10

The applications of IoT in media and advertising involve a customized experience in which the

system analyzes and responds to the needs and interests of each customer. This includes their

general behavior patterns, buying habits, preferences, culture, and other characteristics.

Marketing and Content Delivery

IoT functions in a similar and deeper way to current technology, analytics, and big data. Existing

technology collects specific data to produce related metrics and patterns over time, however,

that data often lacks depth and accuracy. IoT improves this by observing more behaviors and

analyzing them differently.

 This leads to more information and detail, which delivers more reliable metrics and

patterns.

 It allows organizations to better analyze and respond to customer needs or preferences.

 It improves business productivity and strategy, and improves the consumer experience

by only delivering relevant content and solutions.

6. IoT − Media, Marketing, & Advertising

Internet of Things

11

Improved Advertising

Current advertising suffers from excess and poor targeting. Even with today's analytics, modern

advertising fails. IoT promises different and personalized advertising rather than one-size-fits-

all strategies. It transforms advertising from noise to a practical part of life because consumers

interact with advertising through IoT rather than simply receiving it. This makes advertising

more functional and useful to people searching the marketplace for solutions or wondering if

those solutions exist.

Internet of Things

12

The applications of IoT in environmental monitoring are broad: environmental protection,

extreme weather monitoring, water safety, endangered species protection, commercial farming,

and more. In these applications, sensors detect and measure every type of environmental

change.

Air and Water Pollution

Current monitoring technology for air and water safety primarily uses manual labor along with

advanced instruments, and lab processing. IoT improves on this technology by reducing the

need for human labor, allowing frequent sampling, increasing the range of sampling and

monitoring, allowing sophisticated testing on-site, and binding response efforts to detection

systems. This allows us to prevent substantial contamination and related disasters.

Extreme Weather

Though powerful, advanced systems currently in use allow deep monitoring, they suffer from

using broad instruments, such as radar and satellites, rather than more granular solutions. Their

instruments for smaller details lack the same accurate targeting of stronger technology.

New IoT advances promise more fine-grained data, better accuracy, and flexibility. Effective

forecasting requires high detail and flexibility in range, instrument type, and deployment. This

allows early detection and early responses to prevent loss of life and property.

Commercial Farming

Today's sophisticated commercial farms have exploited advanced technology and biotechnology

for quite some time, however, IoT introduces more access to deeper automation and analysis.

7. IoT − Environmental Monitoring

Internet of Things

13

Much of commercial farming, like weather monitoring, suffers from a lack of precision and

requires human labor in the area of monitoring. Its automation also remains limited.

IoT allows operations to remove much of the human intervention in system function, farming

analysis, and monitoring. Systems detect changes to crops, soil, environment, and more. They

optimize standard processes through analysis of large, rich data collections. They also prevent

health hazards (e.g., e. coli) from happening and allow better control.

Internet of Things

14

Manufacturing technology currently in use exploits standard technology along with modern

distribution and analytics. IoT introduces deeper integration and more powerful analytics. This

opens the world of manufacturing in a way never seen before, as organizations become fully-

developed for product delivery rather than a global network of suppliers, makers, and

distributors loosely tied together.

Intelligent Product Enhancements

Much like IoT in content delivery, IoT in manufacturing allows richer insight in real-time. This

dramatically reduces the time and resources devoted to this one area, which traditionally

requires heavy market research before, during, and well after the products hit the market.

IoT also reduces the risks associated with launching new or modified products because it provides

more reliable and detailed information. The information comes directly from market use and

buyers rather than assorted sources of varied credibility.

Dynamic Response to Market Demands

Supplying the market requires maintaining a certain balance impacted by a number of factors

such as economy state, sales performance, season, supplier status, manufacturing facility

status, distribution status, and more. The expenses associated with supply present unique

challenges given today's global partners. The associated potential or real losses can dramatically

impact business and future decisions.

IoT manages these areas through ensuring fine details are managed more at the system level

rather than through human evaluations and decisions. An IoT system can better assess and

control the supply chain (with most products), whether demands are high or low.

Lower Costs, Optimized Resource Use, and Waste Reduction

IoT offers a replacement for traditional labor and tools in a production facility and in the overall

chain which cuts many previously unavoidable costs; for example, maintenance checks or tests

traditionally requiring human labor can be performed remotely with instruments and sensors of

an IoT system.

IoT also enhances operation analytics to optimize resource use and labor, and eliminate various

types of waste, e.g., energy and materials. It analyzes the entire process from the source point

to its end, not just the process at one point in a particular facility, which allows improvement to

have a more substantial impact. It essentially reduces waste throughout the network, and

returns those savings throughout.

8. IoT − Manufacturing Applications

Internet of Things

15

This XRS relay box connects all truck devices (e.g., diagnostics and

driver cell) to the XRS fleet management supporting software, which

allows data collection.

Improved Facility Safety

A typical facility suffers from a number of health and safety hazards due to risks posed by

processes, equipment, and product handling. IoT aids in better control and visibility. Its

monitoring extends throughout the network of devices for not only performance, but for

dangerous malfunctions and usage. It aids (or performs) analysis and repair, or correction, of

critical flaws.

Product Safety

Even the most sophisticated system cannot avoid malfunctions, nonconforming product, and

other hazards finding their way to market. Sometimes these incidents have nothing to do with

the manufacturing process, and result from unknown conflicts.

In manufacturing, IoT helps in avoiding recalls and controlling nonconforming or dangerous

product distribution. Its high level of visibility, control, and integration can better contain any

issues that appear.

Internet of Things

16

The optimization qualities of IoT in manufacturing also apply to energy consumption. IoT allows

a wide variety of energy control and monitoring functions, with applications in devices,

commercial and residential energy use, and the energy source. Optimization results from the

detailed analysis previously unavailable to most organizations and individuals.

Residential Energy

The rise of technology has driven energy costs up. Consumers search for ways to reduce or

control consumption. IoT offers a sophisticated way to analyze and optimize use not only at

device level, but throughout the entire system of the home. This can mean simple switching off

or dimming of lights, or changing device settings and modifying multiple home settings to

optimize energy use.

IoT can also discover problematic consumption from issues like older appliances, damaged

appliances, or faulty system components. Traditionally, finding such problems required the use

of often multiple professionals.

Commercial Energy

Energy waste can easily and quietly impact business in a major way, given the tremendous

energy needs of even small organizations. Smaller organizations wrestle with balancing costs of

business while delivering a product with typically smaller margins, and working with limited

funding and technology. Larger organizations must monitor a massive, complex ecosystem of

energy use that offers few simple, effective solutions for energy use management.

A smart-meter still requires a reader to visit

the site. This automated meter reader

makes visits unnecessary, and also allows

energy companies to bill based on real-time

data instead of estimates over time.

IoT simplifies the process of energy monitoring and management while maintaining a low cost

and high level of precision. It addresses all points of an organization's consumption across

devices. Its depth of analysis and control provides organizations with a strong means of

managing their consumption for cost shaving and output optimization. IoT systems discover

9. IoT − Energy Applications

Internet of Things

17

energy issues in the same way as functional issues in a complex business network, and provide

solutions.

Reliability

The analytics and action delivered by IoT also help to ensure system reliability. Beyond

consumption, IoT prevents system overloads or throttling. It also detects threats to system

performance and stability, which protects against losses such as downtime, damaged equipment,

and injuries.

Internet of Things

18

IoT systems applied to healthcare enhance existing technology, and the general practice of

medicine. They expand the reach of professionals within a facility and far beyond it. They

increase both the accuracy and size of medical data through diverse data collection from large

sets of real-world cases. They also improve the precision of medical care delivery through more

sophisticated integration of the healthcare system.

Research

Much of current medical research relies on resources lacking critical real-world information. It

uses controlled environments, volunteers, and essentially leftovers for medical examination. IoT

opens the door to a wealth of valuable information through real-time field data, analysis, and

testing.

IoT can deliver relevant data superior to standard analytics through integrated instruments

capable of performing viable research. It also integrates into actual practice to provide more key

information. This aids in healthcare by providing more reliable and practical data, and better

leads; which yields better solutions and discovery of previously unknown issues.

It also allows researchers to avoid risks by gathering data without manufactured scenarios and

human testing.

Devices

Current devices are rapidly improving in precision, power, and availability; however, they still

offer less of these qualities than an IoT system integrating the right system effectively. IoT

unlocks the potential of existing technology, and leads us toward new and better medical device

solutions.

IoT closes gaps between equipment and the way we deliver healthcare by creating a logical

system rather than a collection of tools. It then reveals patterns and missing elements in

healthcare such as obvious necessary improvements or huge flaws.

The ClearProbe portable connected ultrasound device can use any

computer anywhere as a supporting machine. The device sends all

imaging records to the master system.

10. IoT − Healthcare Applications

Internet of Things

19

Care

Perhaps the greatest improvement IoT brings to healthcare is in the actual practice of medicine

because it empowers healthcare professionals to better use their training and knowledge to solve

problems. They utilize far better data and equipment, which gives them a window into blind

spots and supports more swift, precise actions. Their decision-making is no longer limited by the

disconnects of current systems, and bad data.

IoT also improves their professional development because they actually exercise their talent

rather than spending too much time on administrative or manual tasks. Their organizational

decisions also improve because technology provides a better vantage point.

Medical Information Distribution

One of the challenges of medical care is the distribution of accurate and current information to

patients. Healthcare also struggles with guidance given the complexity of following guidance.

IoT devices not only improve facilities and professional practice, but also health in the daily lives

of individuals.

IoT devices give direct, 24/7 access to the patient in a less intrusive way than other options.

They take healthcare out of facilities and into the home, office, or social space. They empower

individuals in attending to their own health, and allow providers to deliver better and more

granular care to patients. This results in fewer accidents from miscommunication, improved

patient satisfaction, and better preventive care.

Emergency Care

The advanced automation and analytics of IoT allows more powerful emergency support

services, which typically suffer from their limited resources and disconnect with the base facility.

It provides a way to analyze an emergency in a more complete way from miles away. It also

gives more providers access to the patient prior to their arrival. IoT gives providers critical

information for delivering essential care on arrival. It also raises the level of care available to a

patient received by emergency professionals. This reduces the associated losses, and improves

emergency healthcare.

Internet of Things

20

IoT applied to buildings and various structures allows us to automate routine residential and

commercial tasks and needs in a way that dramatically improves living and working

environments. This, as seen with manufacturing and energy applications, reduces costs,

enhances safety, improves individual productivity, and enhances quality of life.

Environment and Conditioning

One of the greatest challenges in the engineering of buildings remains management of

environment and conditions due to many factors at work. These factors include building

materials, climate, building use, and more. Managing energy costs receives the most attention,

but conditioning also impacts the durability and state of the structure.

IoT aids in improving structure design and managing existing structures through more accurate

and complete data on buildings. It provides important engineering information such as how well

a material performs as insulation in a particular design and environment.

Health and Safety

Buildings, even when constructed with care, can suffer from certain health and safety issues.

These issues include poor performing materials, flaws that leave the building vulnerable to

extreme weather, poor foundations, and more.

The Boss 220 smart plug allows the user to monitor, control, optimize, and

automate all plug-in devices. Users employ their mobile device or desktop to

view performance information and control devices from anywhere.

11. IoT − Building/Housing Applications

Internet of Things

21

Current solutions lack the sophistication needed to detect minor issues before they become

major issues, or emergencies. IoT offers a more reliable and complete solution by observing

issues in a fine-grained way to control dangers and aid in preventing them; for example, it can

measure changes in a system's state impacting fire safety rather than simply detecting smoke.

Productivity and Quality of Life

Beyond safety or energy concerns, most people desire certain comforts from housing or

commercial spaces like specific lighting and temperature. IoT enhances these comforts by

allowing faster and easier customizing.

Adjustments also apply to the area of productivity. They personalize spaces to create an

optimized environment such as a smart office or kitchen prepared for a specific individual.

Internet of Things

22

At every layer of transportation, IoT provides improved communication, control, and data

distribution. These applications include personal vehicles, commercial vehicles, trains, UAVs, and

other equipment. It extends throughout the entire system of all transportation elements such as

traffic control, parking, fuel consumption, and more.

Rails and Mass Transit

Current systems deliver sophisticated integration and performance, however, they employ older

technology and approaches to MRT. The improvements brought by IoT deliver more complete

control and monitoring. This results in better management of overall performance, maintenance

issues, maintenance, and improvements.

Mass transit options beyond standard MRT suffer from a lack of the integration necessary to

transform them from an option to a dedicated service. IoT provides an inexpensive and advanced

way to optimize performance and bring qualities of MRT to other transportation options like

buses. This improves services and service delivery in the areas of scheduling, optimizing

transport times, reliability, managing equipment issues, and responding to customer needs.

Road

The primary concerns of traffic are managing congestion, reducing accidents, and parking. IoT

allows us to better observe and analyze the flow of traffic through devices at all traffic

observation points. It aids in parking by making storage flow transparent when current methods

offer little if any data.

12. IoT − Transportation Applications

Internet of Things

23

This smart road sign receives data and modifications to better inform drivers and

prevent congestion or accidents.

Accidents typically result from a number of factors, however, traffic management impacts their

frequency. Construction sites, poor rerouting, and a lack of information about traffic status are

all issues that lead to incidents. IoT provides solutions in the form of better information sharing

with the public, and between various parties directly affecting road traffic.

Automobile

Many in the automotive industry envision a future for cars in which IoT technology makes cars

“smart,” attractive options equal to MRT. IoT offers few significant improvements to personal

vehicles. Most benefits come from better control over related infrastructure and the inherent

flaws in automobile transport; however, IoT does improve personal vehicles as personal spaces.

IoT brings the same improvements and customization to a vehicle as those in the home.

Commercial Transportation

Transportation benefits extend to business and manufacturing by optimizing the transport arm

of organizations. It reduces and eliminates problems related to poor fleet management through

better analytics and control such as monitoring idling, fuel consumption, travel conditions, and

travel time between points. This results in product transportation operating more like an aligned

service and less like a collection of contracted services.

Internet of Things

24

IoT in the classroom combines the benefits of IoT in content delivery, business, and healthcare.

It customizes and enhances education by allowing optimization of all content and forms of

delivery. It enables educators to give focus to individuals and their method. It also reduces costs

and labor of education through automation of common tasks outside of the actual education

process.

Education Organizations

Education organizations typically suffer from limited funding, labor issues, and poor attention to

actual education. They, unlike other organizations, commonly lack or avoid analytics due to their

funding issues and the belief that analytics do not apply to their industry.

IoT not only provides valuable insight, but it also democratizes that information through low-

cost, low-power small devices, which still offer high performance. This technology aids in

managing costs, improving the quality of education, professional development, and facility

management improvement through rich examinations of key areas:

 Student response, performance, and behavior

 Instructor response, performance, and behavior

 Facility monitoring and maintenance

 Data from other facilities

Data informs them about ineffective strategies and actions, whether educational efforts or facility

qualities. Removing these roadblocks makes them more effective.

Educators

Information provided by IoT empowers educators to deliver improved education. They have a

window into the success of their strategies, their students' perspective, and other aspects of

their performance. IoT relieves them of administrative and management duties, so they can

focus on their mission. It automates manual and clerical labor, and facilitates supervising

through features like system flags or controls to ensure students remain engaged.

13. IoT − Education Applications

Internet of Things

25

A school in Richmond, California, embeds RFID chips in ID cards to track the presence of

students. Even if students are not present for check-in, the system will track and log

their presence on campus.

IoT provides instructors with easy access to powerful educational tools. Educators can use IoT

to perform as a one-on-one instructor providing specific instructional designs for each pupil; for

example, using data to determine the most effective supplements for each student, and auto-

generating content from lesson materials on-demand for any student.

The application of technology improves the professional development of educators because they

truly see what works, and learn to devise better strategies, rather than simply repeating old or

ineffective methods.

IoT also enhances the knowledge base used to devise education standards and practices.

Education research suffers from accuracy issues and a general lack of data. IoT introduces large

high quality, real-world datasets into the foundation of educational design. This comes from IoT's

unique ability to collect enormous amounts of varied data anywhere.

Personalized Education

IoT facilitates the customization of education to give every student access to what they need.

Each student can control their experience and participate in instructional design, and much of

this happens passively. The student simply utilizes the system, and performance data primarily

shapes their design. This combined with organizational and educator optimization delivers highly

effective education while reducing costs.

Internet of Things

26

IoT supports the development of smart nations and smart cities. This includes enhancement of

infrastructure previously discussed (e.g., healthcare, energy, transportation, etc.), defense, and

also the engineering and maintenance of communities.

City Planning and Management

Governing bodies and engineers can use IoT to analyze the often complex aspects of city

planning and management. IoT simplifies examining various factors such as population growth,

zoning, mapping, water supply, transportation patterns, food supply, social services, and land

use. It gathers detailed data in these areas and produces more valuable and accurate information

than current analytics given its ability to actually “live” with people in a city.

Smart trashcans in New York tell garbage collectors when they need to be emptied.

They optimize trash service by ensuring drivers only make necessary stops, and

drivers modify their route to reduce fuel consumption.

14. IoT − Government Applications

Internet of Things

27

In the area of management, IoT supports cities through its implementation in major services

and infrastructure such as transportation and healthcare. It also aids in other key areas like

water control, waste management, and emergency management. Its real-time and detailed

information facilitate more prompt decisions in contrast to the traditional process plagued by

information lag, which can be critical in emergency management.

Standard state services are also improved by IoT, which can automate otherwise slow processes

and trim unnecessary state expenses; for example, it can automate motor vehicle services for

testing, permits, and licensing.

IoT also aids in urban improvement by skipping tests or poor research, and providing functional

data for how the city can be optimized. This leads to faster and more meaningful changes.

Creating Jobs

IoT offers thorough economic analysis. It makes previous blind spots visible and supports better

economic monitoring and modeling. It analyzes industry and the marketplace to spot

opportunities for growth and barriers.

National Defense

National threats prove diverse and complicated. IoT augments armed forces systems and

services, and offers the sophistication necessary to manage the landscape of national defense.

It supports better protection of borders through inexpensive, high performance devices for rich

control and observation.

IoT automates the protection tasks typically spread across several departments and countless

individuals. It achieves this while improving accuracy and speed.

Internet of Things

28

IoT enhances law enforcement organizations and practice, and improves the justice system. The

technology boosts transparency, distributes critical data, and removes human intervention

where it proves unnecessary.

Policing

Law enforcement can be challenging. IoT acts as an instrument of law enforcement which

reduces manual labor and subjective decisions through better data, information sharing, and

advanced automation. IoT systems shave costs by reducing human labor in certain areas such

as certain traffic violations.

IoT aids in creating better solutions to problems by using technology in the place of force; for

example, light in-person investigations of suspicious activities can be replaced with remote

observation, logged footage of violations, and electronic ticketing. It also reduces corruption by

removing human control and opinion for some violations.

This dart planted in a truck gate prevents dangerous car chases. A

patrol car launches the tracking dart which pierces the vehicle. Then

the main system receives all data needed to locate the vehicle.

Court System

Current court systems utilize traditional technology and resources. They generally do not exploit

modern analytics or automation outside of minor legal tasks. IoT brings superior analytics, better

evidence, and optimized processes to court systems which accelerate processes, eliminate

excessive procedures, manage corruption, reduce costs, and improve satisfaction.

15. IoT − Law Enforcement Applications

Internet of Things

29

In the criminal court system, this can result in a more effective and fair system. In routine court

services, it introduces automation similar to that of common government office services; for

example, IoT can automate forming an LLC.

IoT combined with new regulations can remove lawyers from many common legal tasks or

reduce the need for their involvement. This reduces costs and accelerates many processes which

often require months of traversing legal procedures and bureaucracy.

Internet of Things

30

Consumers benefit personally and professionally from the optimization and data analysis of IoT.

IoT technology behaves like a team of personal assistants, advisors, and security. It enhances

the way we live, work, and play.

Home

IoT takes the place of a full staff:

 Butler – IoT waits for you to return home, and ensures your home remains fully

prepared. It monitors your supplies, family, and the state of your home. It takes actions

to resolve any issues that appear.

 Chef – An IoT kitchen prepares meals or simply aids you in preparing them.

 Nanny – IoT can somewhat act as a guardian by controlling access, providing supplies,

and alerting the proper individuals in an emergency.

 Gardner – The same IoT systems of a farm easily work for home landscaping.

 Repairman – Smart systems perform key maintenance and repairs, and also request

them.

 Security Guard – IoT watches over you 24/7. It can observe suspicious individuals miles

away, and recognize the potential of minor equipment problems to become disasters well

before they do.

This smart, connected stove from Whirlpool allows two different heat settings on the same

surface, remote monitoring, and remote control.

16. IoT − Consumer Applications

Internet of Things

31

Work

A smart office or other workspace combines customization of the work environment with smart

tools. IoT learns about you, your job, and the way you work to deliver an optimized environment.

This results in practical accommodations like adjusting the room temperature, but also more

advanced benefits like modifying your schedule and the tools you use to increase your output

and reduce your work time. IoT acts as a manager and consultant capable of seeing what you

cannot.

Play

IoT learns as much about you personally as it does professionally. This enables the technology

to support leisure:

 Culture and Night Life – IoT can analyze your real-world activities and response to

guide you in finding more of the things and places you enjoy such as recommending

restaurants and events based on your preferences and experiences.

 Vacations – Planning and saving for vacations proves difficult for some, and many utilize

agencies, which can be replaced by IoT.

 Products and Services – IoT offers better analysis of the products you like and need

than current analytics based on its deeper access. It integrates with key information like

your finances to recommend great solutions.

Internet of Things

32

Thingworx is a platform for the rapid development and deployment of smart, connected devices.

Its set of integrated IoT development tools support connectivity, analysis, production, and other

aspects of IoT development.

It offers Vuforia for implementing augmented reality development, and Kepware for industrial

connectivity. KEPServerEX provides a single point for data distribution, and facilitates

interoperability when partnered with a ThingWorx agent.

Components

Thingworx offers several key tools for building applications. These tools include the Composer,

the Mashup Builder, storage, a search engine, collaboration, and connectivity. The Composer

provides a modeling environment for design testing. The Mashup Builder delivers easy dashboard

building through common components (or widgets); for example, buttons, lists, wikis, gauges,

and etc.

Thingworx uses a search engine known as SQUEAL, meaning Search, Query, and Analysis. Users

employ SQUEAL in analyzing and filtering data, and searching records.

Interface

The ThingWorx platform uses certain terms you must familiarize yourself with. In the main

screen's top menu, you search for entities or create them. “Entity” refers to something created

in ThingWorx. You can also import/export files and perform various operations on them.

In the left menu, you find entity groups, which are used to produce models and visualize data;

and manage storage, collaboration, security, and the system.

17. IoT − ThingWorx

Internet of Things

33

When you select the Modeling category in the menu, you begin the process by creating an entity.

The entity can be any physical device or software element, and it produces an event on changes

to its property values; for example, a sensor detects a temperature change. You can set events

to trigger actions through a subscription which makes decisions based on device changes.

Data Shapes consist of one or more fields. They describe the data structure of custom events,

infotables, streams, and datatables. Data shapes are considered entities.

Thing Templates and Thing Shapes allow developers to avoid repeating device property

definitions in large IoT systems. Developers create Thing Templates to allow new devices to

inherit properties. They use Thing Shapes to define Templates, properties, or execute services.

Note a Thing only inherits properties, services, events, and other qualities from a single

template, however, Things and templates can inherit properties from multiple Thing Shapes.

Internet of Things

34

Development

ThingWorx actually requires very little programming. Users connect devices, establish a data

source, establish device behaviors, and build an interface without any coding. It also offers

scalability appropriate for both hobbyist projects and industrial applications.

Internet of Things

35

Cisco Virtualized Packet Core (VPC) is a technology providing all core services for 4G, 3G, 2G,

WiFi, and small cell networks. It delivers networking functionality as virtualized services to allow

greater scalability and faster deployment of new services at a reduced cost. It distributes and

manages packet core functions across all resources, whether virtual or physical. Its key features

include packet core service consolidation, dynamic scaling, and system agility.

Its technology supports IoT by offering network function virtualization, SDN (software-defined

networking), and rapid networked system deployment. This proves critical because its

virtualization and SDN support low-power, high flow networking, and the simple deployment of

a wide variety of small devices. It eliminates many of the finer details of IoT systems, and

conflicts, through consolidating into a single system and single technology for connecting and

integrating all elements.

Use Case: Smart Transportation

Rail transportation provides a viable example of the power of VPC. The problems VPC solves

relate to safety, mobility, efficiency, and service improvement:

 Rail applications use their own purpose-built networks, and suffer from interoperability

issues; for example, trackside personnel cannot always communicate with local police

due to different technologies.

18. IoT − Cisco Virtualized Packet Core

Internet of Things

36

 Determining if passengers need extra time to board remains a mostly manual task.

 Data updates, like schedules, remain manual.

 Each piece of equipment, e.g., a surveillance camera, requires its own network and power

source.

A smart MRT sign in New York

VPC improves service by introducing direct communication over a standard network, more and

automated monitoring, automatic data updates through smart signs, and native IP networks for

all devices along with PoE (Power over Ethernet) technology. This results in passengers who feel

safer, and enjoy a better quality service.

Internet of Things

37

The Salesforce IoT Cloud is a platform for storing and processing IoT data. It uses the Thunder

engine for scalable, real-time event processing. Its collection of application development

components, known as Lightning, powers its applications. It gathers data from devices, websites,

applications, customers, and partners to trigger actions for real-time responses.

Salesforce, a CRM leader, decided to enter this space due to the need to remain competitive in

the coming era. The IoT cloud adds to Salesforce by expanding its reach, and the depth of its

analytics.

Salesforce combined with IoT delivers dramatically improved customer service with tighter

integration and responses to real-time events; for example, adjustments in wind turbines could

trigger automatic rebooking of delayed/canceled connecting flights before airline passengers

land.

Electric Imp

The Electric Imp platform is Salesforce's recommended method for quickly connecting devices

to the cloud. You develop applications through the Squirrel language; a high level, OO,

lightweight scripting language. Applications consist of two modules: the device module, which

runs on the device; and the agent module, which runs in the Electric Imp cloud. The platform

ensures secure communication between the modules, and you send devices messages with a

simple call:

agent.send("nameOfmessage", data);

Listen for messages on the agent with the following code:

device.on("nameOfmessage", function(data) {

 //Data operations

});

Beyond these basic tasks, coding for device interaction, monitoring, and response resembles

standard web application development, and uses a simple, easy-to-learn syntax.

19. IoT − Salesforce

Internet of Things

38

GE (General Electric) Predix is a software platform for data collection from industrial instruments.

It provides a cloud-based PaaS (platform as a service), which enables industrial-grade analytics

for operations optimization and performance management. It connects data, individuals, and

equipment in a standard way.

Predix was designed to target factories, and give their ecosystems the same simple and

productive function as operating systems that transformed mobile phones. It began as a tool for

General Electric's internal IoT, specifically created to monitor products sold.

Ge Predix Partnered with Microsoft Azure

Microsoft's Azure is a cloud computing platform and supporting infrastructure. It provides PaaS

and IaaS, and assorted tools for building systems. Predix, recently made available on Azure,

exploits a host of extra features like AI, advanced data visualization, and natural language

technology. Microsoft plans to eventually integrate Predix with its Azure IoT suite and Cortana

Intelligence suite, and also their well-established business applications. Azure will also allow

users to build applications using Predix data. Note AWS and Oracle also support Predix.

Developer Kits

GE offers inexpensive developer kits consisting of general components and an Intel Edison

processor module. Developers have the options of a dual core board and a Raspberry Pi board.

Developers need only provide an IP address, Ethernet connection, power supply, and light

programming to set data collection.

The kit automatically establishes the necessary connection, registers with the central Predix

system, and begins transmitting environmental data from sensors. Users subscribe to

hardware/software output, and GE Digital owns and manages the hardware and software for the

user.

20. IoT − GE Predix

Internet of Things

39

This kit replaces the awkward and involved assemblies of simulations and testing environments.

In other simulations, developers typically use a large set of software (one for each device), and

specific configurations for each connection. They also program the monitoring of each device,

which can sometimes take hours. The kit reduces much of the time spent performing these tasks

from hours to only minutes.

The Predix developer kit

The kit also includes software components for designing an IoT application that partners with

Predix services. GE plans to release other versions of the kit for different applications.

Internet of Things

40

Eclipse IoT is an ecosystem of entities (industry and academia) working together to create a

foundation for IoT based exclusively on open source technologies. Their focus remains in the

areas of producing open source implementations of IoT standard technology; creating open

source frameworks and services for utilization in IoT solutions; and developing tools for IoT

developers.

Smarthome Project

SmartHome is one of Eclipse IoT's major services. It aims to create a framework for building

smart home solutions, and its focus remains heterogeneous environments, meaning assorted

protocols and standards integration.

SmartHome provides uniform device and information access to facilitate interaction between

devices. It consists of OSGi bundles capable of deployment in an OSGi runtime, with OSGi

services defined as extension points.

OSGi bundles are Java class groups and other resources, which also include detailed manifest

files. The manifest contains information on file contents, services needed to enhance class

behavior, and the nature of the aggregate as a component. Review an example of a manifest

below:

Bundle-Name: Hi Everyone // Bundle Name

Bundle-SymbolicName: xyz.xyz.hievery1 // Header specifying an identifier

Bundle-Description: A Hi Everyone bundle // Functionality description

Bundle-ManifestVersion: 2 // OSGi specification

Bundle-Version: 1.0.0 // Version number of bundle

21. IoT − Eclipse IoT

Internet of Things

41

Bundle-Activator: xyz.xyz.Activator // Class invoked on bundle activation

Export-Package: xyz.xyz.helloworld;version="1.0.0" // Java packages available externally

Import-Package: org.osgi.framework;version="1.3.0" // Java packages needed from

// external source

Eclipse SCADA

Eclipse SCADA, another major Eclipse IoT service, delivers a means of connecting various

industrial instruments to a shared communication system. It also post-processes data and sends

data visualizations to operators. It uses a SCADA system with a communication service,

monitoring system, archive, and data visualization.

It aims to be a complete, state-of-the-art open source SCADA system for developing custom

solutions. Its supported technologies and tools include shell applications, JDBC, Modbus TCP and

RTU, Simatic S7 PLC, OPC, and SNMP.

Internet of Things

42

Contiki is an operating system for IoT that specifically targets small IoT devices with limited

memory, power, bandwidth, and processing power. It uses a minimalist design while still packing

the common tools of modern operating systems. It provides functionality for management of

programs, processes, resources, memory, and communication.

It owes its popularity to being very lightweight (by modern standards), mature, and flexible.

Many academics, organization researchers, and professionals consider it a go-to OS. Contiki only

requires a few kilobytes to run, and within a space of under 30KB, it fits its entire operating

system: a web browser, web server, calculator, shell, telnet client and daemon, email client, vnc

viewer, and ftp. It borrows from operating systems and development strategies from decades

ago, which easily exploited equally small space.

Contiki Communication

Contiki supports standard protocols and recent enabling protocols for IoT:

 uIP (for IPv4) – This TCP/IP implementation supports 8-bit and 16-bit microcontrollers.

 uIPv6 (for IPv6) – This is a fully compliant IPv6 extension to uIP.

 Rime – This alternative stack provides a solution when IPv4 or IPv6 prove prohibitive. It

offers a set of primitives for low-power systems.

 6LoWPAN – This stands for IPv6 over low-power wireless personal area networks. It

provides compression technology to support the low data rate wireless needed by devices

with limited resources.

 RPL – This distance vector IPv6 protocol for LLNs (low-power and lossy networks) allows

the best possible path to be found in a complex network of devices with varied capability.

 CoAP – This protocol supports communication for simple devices, typically devices

requiring heavy remote supervision.

22. IoT − Contiki

Internet of Things

43

Dynamic Module Loading

Dynamic module loading and linking at run-time supports environments in which application

behavior changes after deployment. Contiki's module loader loads, relocates, and links ELF files.

The Cooja Network Simulator

Cooja, the Contiki network simulator, spawns an actual compiled and working Contiki system

controlled by Cooja.

Using Cooja proves simple. Simply create a new mote type by selecting the Motes menu and

Add Motes > Create New Mote Type. In the dialog that appears, you choose a name for the

mote, select its firmware, and test its compilation.

After creation, add motes by clicking Create. A new mote type will appear to which you can

attach nodes. The final step requires saving your simulation file for future use.

Internet of Things

44

Every connected device creates opportunities for attackers. These vulnerabilities are broad, even

for a single small device. The risks posed include data transfer, device access, malfunctioning

devices, and always-on/always-connected devices.

The main challenges in security remain the security limitations associated with producing low-

cost devices, and the growing number of devices which creates more opportunities for attacks.

Security Spectrum

The definition of a secured device spans from the most simple measures to sophisticated designs.

Security should be thought of as a spectrum of vulnerability which changes over time as threats

evolve.

Security must be assessed based on user needs and implementation. Users must recognize the

impact of security measures because poorly designed security creates more problems than it

solves.

Example: A German report revealed hackers compromised the security system of a steel mill.

They disrupted the control systems, which prevented a blast furnace from being shut down

properly, resulting in massive damage. Therefore, users must understand the impact of an attack

before deciding on appropriate protection.

23. IoT − Security

Internet of Things

45

Challenges

Beyond costs and the ubiquity of devices, other security issues plague IoT:

 Unpredictable Behavior – The sheer volume of deployed devices and their long list of

enabling technologies means their behavior in the field can be unpredictable. A specific

system may be well designed and within administration control, but there are no

guarantees about how it will interact with others.

 Device Similarity – IoT devices are fairly uniform. They utilize the same connection

technology and components. If one system or device suffers from a vulnerability, many

more have the same issue.

 Problematic Deployment – One of the main goals of IoT remains to place advanced

networks and analytics where they previously could not go. Unfortunately, this creates

the problem of physically securing the devices in these strange or easily accessed places.

 Long Device Life and Expired Support – One of the benefits of IoT devices is

longevity, however, that long life also means they may outlive their device support.

Compare this to traditional systems which typically have support and upgrades long after

many have stopped using them. Orphaned devices and abandonware lack the same

security hardening of other systems due to the evolution of technology over time.

 No Upgrade Support – Many IoT devices, like many mobile and small devices, are not

designed to allow upgrades or any modifications. Others offer inconvenient upgrades,

which many owners ignore, or fail to notice.

 Poor or No Transparency – Many IoT devices fail to provide transparency with regard

to their functionality. Users cannot observe or access their processes, and are left to

assume how devices behave. They have no control over unwanted functions or data

collection; furthermore, when a manufacturer updates the device, it may bring more

unwanted functions.

 No Alerts – Another goal of IoT remains to provide its incredible functionality without

being obtrusive. This introduces the problem of user awareness. Users do not monitor

the devices or know when something goes wrong. Security breaches can persist over long

periods without detection.

Internet of Things

46

IoT devices collect data about their environment, which includes people. These benefits introduce

heavy risk. The data itself does not present the danger, however, its depth does. The highly

detailed data collection paints a very clear picture of an individual, giving criminals all the

information they need to take advantage of someone.

People may also not be aware of the level of privacy; for example, entertainment devices may

gather A/V data, or “watch” a consumer, and share intimate information. The demand and price

for this data exacerbates the issue considering the number and diversity of parties interested in

sensitive data.

Problems specific to IoT technology lead to many of its privacy issues, which primarily stem from

the user's inability to establish and control privacy:

Consent

The traditional model for “notice and consent” within connected systems generally enforces

existing privacy protections. It allows users to interact with privacy mechanisms, and set

preferences typically through accepting an agreement or limiting actions. Many IoT devices have

no such accommodations. Users not only have no control, but they are also not afforded any

transparency regarding device activities.

The Right to be Left Alone

Users have normal expectations for privacy in certain situations. This comes from the commonly

accepted idea of public and private spaces; for example, individuals are not surprised by

surveillance cameras in commercial spaces, however, they do not expect them in their personal

vehicle. IoT devices challenge these norms people recognize as the “right to be left alone.” Even

in public spaces, IoT creeps beyond the limits of expected privacy due to its power.

Indistinguishable Data

IoT deploys in a wide variety of ways. Much of IoT implementation remains group targeted rather

than personal. Even if users give IoT devices consent for each action, not every system can

reasonably process every set of preferences; for example, small devices in a complex assembly

cannot honor the requests of tens of thousands of users they encounter for mere seconds.

Granularity

Modern big data poses a substantial threat to privacy, but IoT compounds the issue with its scale

and intimacy. It goes not only where passive systems cannot, but it collects data everywhere.

This supports creation of highly detailed profiles which facilitate discrimination and expose

individuals to physical, financial, and reputation harm.

Comfort

The growth of IoT normalizes it. Users become comfortable with what they perceive as safe

technology. IoT also lacks the transparency that warns users in traditional connected systems;

consequently, many act without any consideration for the potential consequences.

24. IoT − Identity Protection

Internet of Things

47

The security flaws of IoT and its ability to perform certain tasks open the door to any associated

liability. The three main areas of concern are device malfunction, attacks, and data theft. These

issues can result in a wide variety of damages.

Device Malfunction

IoT introduces a deeper level of automation which can have control over critical systems, and

systems impacting life and property. When these systems fail or malfunction, they can cause

substantial damage; for example, if an IoT furnace control system experiences a glitch, it may

fail in an unoccupied home and cause frozen pipes and water damage. This forces organizations

to create measures against it.

This smart thermostat allows attackers to gain remote access, and breach the

rest of the network.

Cyber Attacks

IoT devices expose an entire network and anything directly impacted to the risk of attacks.

Though those connections deliver powerful integration and productivity, they also create the

perfect opportunity for mayhem like a hacked stove or fire safety sprinkler system. The best

measures against this address the most vulnerable points, and provide custom protections such

as monitoring and access privileges.

25. IoT − Liability

Internet of Things

48

Some of the most effective measures against attacks prove simple:

 Built-in Security – Individuals and organizations should seek hardened devices,

meaning those with security integrated in the hardware and firmware.

 Encryption – This must be implemented by the manufacturer and through user systems.

 Risk Analysis – Organizations and individuals must analyze possible threats in designing

their systems or choosing them.

 Authorization – Devices, whenever possible, must be subject to privilege policies and

access methods.

Bitdefender BOX secures all connected devices in the home.

Data Theft

Data, IoT's strength and weakness, proves irresistible to many. These individuals have a number

of reasons for their interest: the value of personal data to marketing/advertising, identity theft,

framing individuals for crimes, stalking, and a bizarre sense of satisfaction. Measures used to

fight attacks are also effective in managing this threat.

Internet of Things

49

The following resources offer more in-depth information on IoT development and administration.

You can refer them to increase your knowledge on IoT further.

Useful IoT Websites

 Internet of Things Council – This European think tank offers the best and latest IoT

information. They analyze every aspect of IoT from forecasting to discussing prototype

development, and the social implications of IoT.

 LinkedIn Pulse Content – LinkedIn, described as the world's largest professional network,

allows over 100 million professionals to network. It opened its publishing platform, Pulse,

to the public in 2014, resulting in a wealth of valuable professional and industry

information. This information includes rare insight, training media, and more related to

IoT systems and technologies.

 Lynda.com IoT Videos – This online learning organization offers thousands of videos on

various topics (including IoT) supplied by professionals, organizations, and individuals.

 YouTube IoT Videos – Individuals just like you produce thousands of IoT videos on YT to

address particular topics not covered elsewhere, or covered poorly elsewhere. These

videos use different languages, styles, and offer unique voices.

Useful IoT Literature

Building Internet of

Things with the Arduino

(Volume 1)

by

Charalampos Doukas

Making Things Talk, 2nd

Edition

by

Tom Igoe

Building Wireless Sensor

Networks: with ZigBee,

Xbee, Arduino, and

Processing

by

Robert Faludi

Building the Web of

Things with Examples in

Node.js and Raspberry Pi

by

Dominique D. Guinard and

Vlad M. Trifa

Internet of Things (A

Hands-on-Approach)

by

Arshdeep Bahga and Vijay

Madisetti

The Internet of Things in

the Cloud: A Middleware

Perspective

by

Honbo Zhou

If you would like your site or literature listed on this page, please contact us at

contact@tutorialspoint.com

26. IoT − Useful Resources

http://www.theinternetofthings.eu/
https://www.linkedin.com/topic/internet-of-things
https://www.lynda.com/search?q=IoT
https://www.youtube.com/results?search_query=IoT

	MODULE 1
	Syllabus:
	Module 2
	Module 3
	Module 4
	Module 5
	Module 6
	EC 308 EMBEDDED SYSTEMS
	Embedded system- definitions
	BLOCK DIAGRAM OF TYPICAL EMBEDDED SYSTEMS
	COMPONENTS OF EMBEDDED SYSTEM HARDWARE
	1. Hardware.
	Hardware.
	Power Source
	System Timers & Real-Time Clocks (RTC)
	Reset Circuit, Power-up Reset & Watchdog-Timer Reset
	Memory
	a. ROM or EPROM or Flash
	EMBEDDED PROCESSORS
	2. Application-Specific Integrated Circuit (ASIC)
	3. Application Specific Instruction-Set Processor (ASIP)
	4. Multi-core processors or multi-processor:
	The following are important considerations when selecting a processor:
	5. MICROPROCESSOR
	7. SINGLE PURPOSE PROCESSORS
	(8) Network processor:
	(9) Accelerator
	(10) Controller
	EMBEDDED SOFTWARE IN A SYSTEM
	1) MACHINE-CODE BASED CODING
	2) CODING IN ASSEMBLY LANGUAGE
	Figure: shows the process of converting an assembly language program into machine implementable software file and then finally obtaining a ROM image file.
	3) CODING IN HIGH LEVEL LANGUAGE
	Figure shows the process of converting a C program into the ROM image file.
	4) DEVICE DRIVERS
	ARM PROCESSOR
	ARM9
	Advanced RISC Machine (ARM) Processor Fundamentals
	Registers
	Pipeline implementation
	ARM Bus Organization -AMBA
	Multiple bus masters.
	Embedded Product Development Life Cycle (EDLC)
	Waterfall Model
	Advantages
	Drawbacks
	Challenges in Embedded Systems

	Module 2
	UART (Universal Asynchronous Receiver Transmitter)
	Handshaking Signals’ in UART based serial communication
	Serial Data Transmission in UART
	UART Frame structure
	Advantages of UART
	Disadvantages of UART

	HDLC (High-level Data Link Control)
	HDLC Frame types
	Information frames
	Supervisory frames
	Unnumbered frames

	SCI Port (Serial Connect Interface)
	SPI Bus (Synchronous Peripheral Interface)
	SPI I/O Registers
	SPI Modes
	SPI Control Register
	SPI Interrupts
	SPI Data Register
	SPI Baud Rate
	SPI Status Flags
	SPI Initialization sequence
	Master to Slave Transfer

	SERIAL BUS COMMUNICATION PROTOCOLS
	Universal Serial Bus (USB)
	Features of USB protocol
	USB Host & USB Devices
	Host connection to the devices or nodes
	Tree Topology of USB ‘Hubs’ & ‘Nodes
	USB Protocol
	• Control Transfer
	• Bulk Transfer
	• Interrupt Transfer
	• Isochronous Transfer –

	CAN Protocol (Controller Area Network)
	CAN Frames – CAN protocol supports four message formats
	(ii) Remote Frame
	(iv) Overload Frame
	Arbitration Field 12 bits : –
	Control Field & Data Field
	Can protocol works in two cases
	Bus arbitration method

	I2C (Inter-Integrated Circuit)
	Device Addresses and Master in the I²C bus
	Important Properties of I2C protocol

	PARALLEL BUS DEVICE PROTOCOLS
	ISA (Industry Standard Architecture)
	PCI (Peripheral Component Interconnect)
	PCI Bus Protocol for Parallel Data Communication
	PCI Bus
	PCI device identification
	PCI bridge

	PCI-X Bus
	Advantages & Benefits of PCI
	Features of PCI bus & PCI protocol

	Module 3
	MEMORY DEVICES
	CHARACTERISTICS OF MEMORY
	1. MROM (Masked ROM)
	2. PROM (One Time Programmable ROM –OTP ROM)
	3. EPROM (Erasable and Programmable ROM)
	4. EPROM (Erasable and Programmable ROM)
	5. Flash Memory
	RAM
	1. EDO (Extended Data Out) RAM
	2. SDRAM (Synchronous DRAM)
	3. Double-Data Rate SDRAMs (DDRs) –
	4. RDRAM (Rambus* DRAM)
	5. Parameterised Distributed RAM
	MMU & MEMORY MAPPING
	Memory Map
	Virtual Memory System
	MEMORY MAPPING THROGH ADDRESS TRANSLATION
	Address Translation for ‘Segmented Addresses’ –
	Address Translation for ‘Paged Addresses’
	TRANSLATION LOOKASIDE BUFFER (TLB)
	DIRECT MEMORY ACCESS (DMA)
	I/O Devices
	Difference between Timer & Counter
	Cyclic & Acyclic Modes of Operation of Counter/ Timer

	INTERRUPTS
	INTERRUPT SERVICE ROUTINE (ISR) (Interrupt Handler Program -)
	Interrupt handling mechanism
	Multiple Interrupts: (Non Nested ISR and Nested ISR)
	Non Nested ISR:
	Nested ISR:
	Interrupt Priorities & Interrupt Vectors
	INTERRUPT PRIORITIES
	Masking of interrupts
	INTERRUPT VECTORS
	Types of Interrupts
	1. Hardware Interrupt Sources:
	b) External Hardware interrupts with also sending vector address
	c) External Hardware Interrupts with Internal Vector Address Generation
	d) Sources of interrupts due to Processor Hardware detecting Software error
	2. Software Interrupts(Exceptions & Traps)

	DEVICE DRIVERS
	TYPES OF DEVICE DRIVERS –
	FUNCTIONALITIES OF DEVICE DRIVERS –
	1. Device Drivers for Interrupt-Handling
	2. Memory Device Drivers
	3. On-board Bus Device Drivers

	MODULE IV
	Syllabus
	ADVANTAGES OF ASSEMBLY-LANGUAGE PROGRAMMING (ALP)
	ADVANTAGES OF HIGH-LEVEL LANGUAGE PROGRAMMING
	(2) A High-level language program facilitates declarations of data types.
	(3) High-level program facilitates 'Type Checking'
	ADVANTAGES OF EMBEDDED ‘C’
	OBJECT-ORIENTED PROGRAMMING
	EMBEDDED PROGRAMMING IN C++ -
	ADVANTAGES OF ‘C++’
	(1) Class & Objects
	(2) Inheritance
	(3) Method Overloading & Method over-riding
	(4) Operator Overloading
	(5) Polymorphism
	DISADVANTAGES OF ‘C++’
	Additional Features of Embedded C++
	Compiler for Embedded C++
	Code & Memory Optimization in ‘Embedded C++ Program
	EMBEDDED PROGRAMMING IN JAVA
	Java Program Element and Explanation
	ADVANTAGES OF JAVA PROGRAMMING
	DISADVANTAGES OF JAVA PROGRAMMING
	SOFTWARE IMPLEMENTATION
	EMBEDDED SOFTWARE TESTING
	STLC : Software Testing Life Cycle
	(1) Requirement Analysis -
	(2) Test Planning –
	(3) Test Case Development –
	(4) Test Environment Setup –
	(5) Test Execution –
	(6) Test Cycle Closure –
	Types of Testing
	Advantages of Black-Box Testing
	Disadvantages of Black-Box Testing
	Advantages of White-Box Testing
	Disadvantages of White-Box Testing
	Advantages of Grey-Box Testing
	Disadvantages of Grey-Box Testing
	Comparison of Black-Box testing, Grey-Box Testing & White-Box Testing
	VALIDATION
	Unit Testing
	Integration Testing.
	System Testing
	A typical SoC consists of a
	Advantage of SOC
	SoC Challenges
	Soc design: IP Based Design
	CASE STUDY OF MOBILE-PHONES
	REQUIREMENTS
	Cursor key
	Command/Menu Keys
	Command Function
	Options
	SMS Create Application
	Tasks
	Syllabus
	Subject : EC 308 EMBEDDED SYSTEMS
	Process
	Example - Mobile Phone Device embedded software
	Process Control Block
	Information about the process state at Process Control Block:
	Thread
	Multiprocessing OS
	Thread parameters
	Thread’s stack
	Task
	Main Features of a ‘Task’ -
	Task States
	Idle (created) state
	Ready (Active) State
	Running state
	Blocked (waiting) state
	Deleted (finished) state
	MULTI-TASKING
	Process/Task Scheduling
	(1) Non-Preemptive (2)Pre-Emptive
	Pre-Emptive Scheduling Methods
	SHARED DATA
	Inter Process Communication (IPC)
	Signals Features:
	Signal-Dispatch Table
	Signal-Mask Table
	Application Example:
	Advantage of using a Signal
	Drawbacks of using a Signal
	Semaphore
	Semaphore functions:
	Semaphore as a resource key and for critical sections having shared for critical sections having shared resource (s):
	Mutex Semaphore for use as resource key:
	P and V semaphores
	Message Queues
	Features:
	Queue IPC functions
	OSQCreate
	OSQPost
	OSQPend
	OSQAccept
	OSQFlush
	OSQQuery
	OSQPostFront
	Mailbox
	Features
	Types:
	Mailbox Functions
	Pipes
	Write and read using Pipe
	Pipe Functions
	Sockets
	Need for Sockets for the Inter Process Communication
	Features: (1)
	Socket Functions
	RPC (remote procedure call)
	Terms involved in RPC
	Syllabus
	OPERATING SYSTEMS (OS) - INTRODUCTION
	Types of Operating Systems
	Real-Time Operating Systems
	TYPES OF RTOS
	Multitasking
	The following are important requirements that an OS must meet to be considered an RTOS in the contemporary sense.
	**CHARACTERISTICS OF RTOS
	The OS/ RTOS goals are :
	STRUCTURE
	RTOS’ Vs ‘Non-Real-Time OS’
	KERNEL
	Kernel services in an operating system are - Process management –
	PROCESS MANAGEMENT
	1. Process Creation –
	2. Management of the Created Processes
	4. Process Scheduling
	MEMORY MANAGEMENT
	Memory Managing Strategy for a System
	Memory Allocation
	Memory Allocation & De-Allocation
	Memory Management after Initial Allocation
	Memory Manager
	DEVICE MANAGEMENT
	Set of Command functions for Device Management
	Function of device manager
	File in Embedded Systems
	File Management Functions
	File systems
	File Descriptor
	MICRO C/OS-II RTOS (MUCOS)
	6.9 µC/OS-II System level Functions

